Documentation Verification Report

ExtendFrom

📁 Source: Mathlib/Topology/Order/ExtendFrom.lean

Statistics

MetricCount
Definitions0
TheoremscontinuousOn_Icc_extendFrom_Ioo, continuousOn_Ico_extendFrom_Ioo, continuousOn_Ioc_extendFrom_Ioo, continuousOn_uIcc_extendFrom_uIoo, eq_lim_at_left_extendFrom_Ioo, eq_lim_at_left_extendFrom_uIoo, eq_lim_at_right_extendFrom_Ioo, eq_lim_at_right_extendFrom_uIoo
8
Total8

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_Icc_extendFrom_Ioo 📖mathematicalContinuousOn
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
nhdsWithin
Set.Ioi
nhds
Set.Iio
extendFrom
Set.Icc
continuousOn_extendFrom
closure_Ioo
subset_refl
Set.instReflSubset
Set.eq_endpoints_or_mem_Ioo_of_mem_Icc
Filter.Tendsto.mono_left
nhdsWithin_mono
Set.Ioo_subset_Ioi_self
Set.Ioo_subset_Iio_self
continuousOn_Ico_extendFrom_Ioo 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.Ioo
Filter.Tendsto
nhdsWithin
Set.Ioi
nhds
extendFrom
Set.Ico
continuousOn_extendFrom
closure_Ioo
LT.lt.ne
Set.Ico_subset_Icc_self
Set.eq_left_or_mem_Ioo_of_mem_Ico
nhdsWithin_Ioo_eq_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
continuousOn_Ioc_extendFrom_Ioo 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.Ioo
Filter.Tendsto
nhdsWithin
Set.Iio
nhds
extendFrom
Set.Ioc
continuousOn_Ico_extendFrom_Ioo
OrderDual.denselyOrdered
instOrderTopologyOrderDual
LT.lt.dual
Set.Ioo_toDual
Set.Ioi_toDual
Set.Ico_toDual
continuousOn_uIcc_extendFrom_uIoo 📖mathematicalContinuousOn
Set.uIoo
Filter.Tendsto
nhdsWithin
nhds
extendFrom
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Ne.lt_or_gt
Set.uIoo_of_lt
Set.uIcc_of_lt
continuousOn_Icc_extendFrom_Ioo
nhdsWithin_Ioo_eq_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
nhdsWithin_Ioo_eq_nhdsLT
instClosedIicTopology
Set.uIoo_of_gt
Set.uIcc_of_gt
eq_lim_at_left_extendFrom_Ioo 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
nhdsWithin
Set.Ioi
nhds
extendFrom
Set.Ioo
extendFrom_eq
closure_Ioo
LT.lt.ne
le_of_lt
nhdsWithin_Ioo_eq_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
eq_lim_at_left_extendFrom_uIoo 📖mathematicalFilter.Tendsto
nhdsWithin
Set.uIoo
nhds
extendFromextendFrom_eq
closure_uIoo
eq_lim_at_right_extendFrom_Ioo 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
nhdsWithin
Set.Iio
nhds
extendFrom
Set.Ioo
extendFrom_eq
closure_Ioo
LT.lt.ne
le_of_lt
nhdsWithin_Ioo_eq_nhdsLT
instClosedIicTopology
OrderTopology.to_orderClosedTopology
eq_lim_at_right_extendFrom_uIoo 📖mathematicalFilter.Tendsto
nhdsWithin
Set.uIoo
nhds
extendFromextendFrom_eq
closure_uIoo

---

← Back to Index