Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Order/Hom/Basic.lean

Statistics

MetricCount
DefinitionsContinuousOrderHom, comp, copy, id, instFunLike, instInhabited, instPartialOrder, instPreorder, toContinuousMap, toOrderHom, ContinuousOrderHomClass, instCoeTCContinuousOrderHom, toContinuousOrderHom, Β«term_β†’Co_Β»
14
Theoremscancel_left, cancel_right, coe_comp, coe_copy, coe_id, coe_toOrderHom, comp_apply, comp_assoc, comp_id, continuous_toFun, copy_eq, ext, ext_iff, id_apply, id_comp, instContinuousOrderHomClass, toFun_eq_coe, map_monotone, toContinuousMapClass, toOrderHomClass
20
Total34

ContinuousOrderHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
8 mathmath: comp_assoc, coe_comp, EsakiaHom.coe_comp_continuousOrderHom, comp_apply, cancel_left, id_comp, cancel_right, comp_id
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
id πŸ“–CompOp
5 mathmath: id_apply, coe_id, EsakiaHom.coe_id_continuousOrderHom, id_comp, comp_id
instFunLike πŸ“–CompOp
9 mathmath: coe_comp, id_apply, coe_toOrderHom, comp_apply, coe_id, toFun_eq_coe, instContinuousOrderHomClass, EsakiaHom.toContinuousOrderHom_coe, ext_iff
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instPreorder πŸ“–CompOpβ€”
toContinuousMap πŸ“–CompOpβ€”
toOrderHom πŸ“–CompOp
4 mathmath: coe_toOrderHom, continuous_toFun, toFun_eq_coe, EsakiaHom.toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left πŸ“–mathematicalDFunLike.coe
ContinuousOrderHom
instFunLike
compβ€”ext
comp_apply
cancel_right πŸ“–mathematicalDFunLike.coe
ContinuousOrderHom
instFunLike
compβ€”ext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
ContinuousOrderHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
ContinuousOrderHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
ContinuousOrderHom
instFunLike
id
β€”β€”
coe_toOrderHom πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderHom.instFunLike
toOrderHom
ContinuousOrderHom
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousOrderHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
continuous_toFun πŸ“–mathematicalβ€”Continuous
OrderHom.toFun
toOrderHom
β€”β€”
copy_eq πŸ“–mathematicalDFunLike.coe
ContinuousOrderHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
ContinuousOrderHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousOrderHom
instFunLike
β€”ext
id_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousOrderHom
instFunLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instContinuousOrderHomClass πŸ“–mathematicalβ€”ContinuousOrderHomClass
ContinuousOrderHom
instFunLike
β€”continuous_toFun
OrderHom.monotone'
toFun_eq_coe πŸ“–mathematicalβ€”OrderHom.toFun
toOrderHom
DFunLike.coe
ContinuousOrderHom
instFunLike
β€”β€”

ContinuousOrderHomClass

Definitions

NameCategoryTheorems
instCoeTCContinuousOrderHom πŸ“–CompOpβ€”
toContinuousOrderHom πŸ“–CompOp
2 mathmath: EsakiaHom.coe_comp_continuousOrderHom, EsakiaHom.coe_id_continuousOrderHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_monotone πŸ“–mathematicalβ€”Monotone
DFunLike.coe
β€”β€”
toContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClassβ€”β€”
toOrderHomClass πŸ“–mathematicalβ€”OrderHomClass
Preorder.toLE
β€”map_monotone

(root)

Definitions

NameCategoryTheorems
ContinuousOrderHom πŸ“–CompData
9 mathmath: ContinuousOrderHom.coe_comp, ContinuousOrderHom.id_apply, ContinuousOrderHom.coe_toOrderHom, ContinuousOrderHom.comp_apply, ContinuousOrderHom.coe_id, ContinuousOrderHom.toFun_eq_coe, ContinuousOrderHom.instContinuousOrderHomClass, EsakiaHom.toContinuousOrderHom_coe, ContinuousOrderHom.ext_iff
ContinuousOrderHomClass πŸ“–CompData
2 mathmath: ContinuousOrderHom.instContinuousOrderHomClass, EsakiaHomClass.toContinuousOrderHomClass
Β«term_β†’Co_Β» πŸ“–CompOpβ€”

---

← Back to Index