Documentation Verification Report

Esakia

📁 Source: Mathlib/Topology/Order/Hom/Esakia.lean

Statistics

MetricCount
DefinitionsEsakiaHom, comp, copy, id, instFunLike, instInhabited, toContinuousOrderHom, toPseudoEpimorphism, EsakiaHomClass, PseudoEpimorphism, comp, copy, id, instFunLike, instInhabited, toOrderHom, PseudoEpimorphismClass, instCoeTCEsakiaHomOfEsakiaHomClass, instCoeTCPseudoEpimorphismOfPseudoEpimorphismClass
19
Theoremscancel_left, cancel_right, coe_comp, coe_comp_continuousOrderHom, coe_comp_pseudoEpimorphism, coe_copy, coe_id, coe_id_continuousOrderHom, coe_id_pseudoEpimorphism, comp_apply, comp_assoc, comp_id, copy_eq, exists_map_eq_of_map_le', ext, ext_iff, id_apply, id_comp, instEsakiaHomClass, toContinuousOrderHom_coe, toFun_eq_coe, exists_map_eq_of_map_le, toContinuousOrderHomClass, toPseudoEpimorphismClass, toPseudoEpimorphismClass, cancel_left, cancel_right, coe_comp, coe_comp_orderHom, coe_copy, coe_id, coe_id_orderHom, comp_apply, comp_assoc, comp_id, copy_eq, exists_map_eq_of_map_le', ext, ext_iff, id_apply, id_comp, instPseudoEpimorphismClass, toFun_eq_coe, toOrderHom_eq_coe, exists_map_eq_of_map_le, toRelHomClass, toTopHomClass
47
Total66

EsakiaHom

Definitions

NameCategoryTheorems
comp 📖CompOp
9 mathmath: id_comp, comp_id, comp_apply, coe_comp_continuousOrderHom, cancel_left, cancel_right, coe_comp_pseudoEpimorphism, coe_comp, comp_assoc
copy 📖CompOp
2 mathmath: copy_eq, coe_copy
id 📖CompOp
6 mathmath: id_comp, comp_id, coe_id, coe_id_continuousOrderHom, coe_id_pseudoEpimorphism, id_apply
instFunLike 📖CompOp
12 mathmath: comp_apply, coe_comp_continuousOrderHom, coe_id, coe_comp_pseudoEpimorphism, coe_comp, coe_id_continuousOrderHom, instEsakiaHomClass, ext_iff, toContinuousOrderHom_coe, coe_id_pseudoEpimorphism, id_apply, toFun_eq_coe
instInhabited 📖CompOp
toContinuousOrderHom 📖CompOp
2 mathmath: toContinuousOrderHom_coe, toFun_eq_coe
toPseudoEpimorphism 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
compext
comp_apply
cancel_right 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
compext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
comp
coe_comp_continuousOrderHom 📖mathematicalContinuousOrderHomClass.toContinuousOrderHom
EsakiaHom
instFunLike
EsakiaHomClass.toContinuousOrderHomClass
instEsakiaHomClass
comp
ContinuousOrderHom.comp
EsakiaHomClass.toContinuousOrderHomClass
instEsakiaHomClass
coe_comp_pseudoEpimorphism 📖mathematicalOrderHomClass.toOrderHom
EsakiaHom
instFunLike
PseudoEpimorphismClass.toRelHomClass
EsakiaHomClass.toPseudoEpimorphismClass
instEsakiaHomClass
comp
PseudoEpimorphismClass.exists_map_eq_of_map_le
PseudoEpimorphism.comp
PseudoEpimorphismClass.toRelHomClass
EsakiaHomClass.toPseudoEpimorphismClass
instEsakiaHomClass
PseudoEpimorphismClass.exists_map_eq_of_map_le
coe_copy 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
id
coe_id_continuousOrderHom 📖mathematicalContinuousOrderHomClass.toContinuousOrderHom
EsakiaHom
instFunLike
EsakiaHomClass.toContinuousOrderHomClass
instEsakiaHomClass
id
ContinuousOrderHom.id
EsakiaHomClass.toContinuousOrderHomClass
instEsakiaHomClass
coe_id_pseudoEpimorphism 📖mathematicalOrderHomClass.toOrderHom
EsakiaHom
instFunLike
PseudoEpimorphismClass.toRelHomClass
EsakiaHomClass.toPseudoEpimorphismClass
instEsakiaHomClass
id
PseudoEpimorphismClass.exists_map_eq_of_map_le
PseudoEpimorphism.id
PseudoEpimorphismClass.toRelHomClass
EsakiaHomClass.toPseudoEpimorphismClass
instEsakiaHomClass
PseudoEpimorphismClass.exists_map_eq_of_map_le
comp_apply 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
ext
copy_eq 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
copyDFunLike.ext'
exists_map_eq_of_map_le' 📖Preorder.toLE
OrderHom.toFun
ContinuousOrderHom.toOrderHom
toContinuousOrderHom
ext 📖DFunLike.coe
EsakiaHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
ext
id_apply 📖mathematicalDFunLike.coe
EsakiaHom
instFunLike
id
id_comp 📖mathematicalcomp
id
ext
instEsakiaHomClass 📖mathematicalEsakiaHomClass
EsakiaHom
instFunLike
ContinuousOrderHom.continuous_toFun
OrderHom.monotone'
exists_map_eq_of_map_le'
toContinuousOrderHom_coe 📖mathematicalDFunLike.coe
ContinuousOrderHom
ContinuousOrderHom.instFunLike
toContinuousOrderHom
EsakiaHom
instFunLike
toFun_eq_coe 📖mathematicalOrderHom.toFun
ContinuousOrderHom.toOrderHom
toContinuousOrderHom
DFunLike.coe
EsakiaHom
instFunLike

EsakiaHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
exists_map_eq_of_map_le 📖Preorder.toLE
DFunLike.coe
toContinuousOrderHomClass 📖mathematicalContinuousOrderHomClass
toPseudoEpimorphismClass 📖mathematicalPseudoEpimorphismClassContinuousOrderHomClass.map_monotone
toContinuousOrderHomClass
exists_map_eq_of_map_le

OrderIsoClass

Theorems

NameKindAssumesProvesValidatesDepends On
toPseudoEpimorphismClass 📖mathematicalPseudoEpimorphismClass
EquivLike.toFunLike
toOrderHomClass
le_map_inv_iff
EquivLike.right_inv

PseudoEpimorphism

Definitions

NameCategoryTheorems
comp 📖CompOp
9 mathmath: cancel_right, comp_id, id_comp, comp_apply, coe_comp, EsakiaHom.coe_comp_pseudoEpimorphism, comp_assoc, cancel_left, coe_comp_orderHom
copy 📖CompOp
2 mathmath: coe_copy, copy_eq
id 📖CompOp
6 mathmath: comp_id, coe_id, id_comp, EsakiaHom.coe_id_pseudoEpimorphism, id_apply, coe_id_orderHom
instFunLike 📖CompOp
10 mathmath: coe_id, toFun_eq_coe, comp_apply, coe_comp, instPseudoEpimorphismClass, ext_iff, id_apply, toOrderHom_eq_coe, coe_id_orderHom, coe_comp_orderHom
instInhabited 📖CompOp
toOrderHom 📖CompOp
2 mathmath: toFun_eq_coe, toOrderHom_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cancel_left 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
compext
comp_apply
cancel_right 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
compext
Function.Surjective.forall
DFunLike.ext_iff
coe_comp 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
comp
coe_comp_orderHom 📖mathematicalOrderHomClass.toOrderHom
PseudoEpimorphism
instFunLike
PseudoEpimorphismClass.toRelHomClass
instPseudoEpimorphismClass
comp
OrderHom.comp
PseudoEpimorphismClass.toRelHomClass
instPseudoEpimorphismClass
coe_copy 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
id
coe_id_orderHom 📖mathematicalOrderHomClass.toOrderHom
PseudoEpimorphism
instFunLike
PseudoEpimorphismClass.toRelHomClass
instPseudoEpimorphismClass
id
OrderHom.id
PseudoEpimorphismClass.toRelHomClass
instPseudoEpimorphismClass
comp_apply 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
ext
copy_eq 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
copyDFunLike.ext'
exists_map_eq_of_map_le' 📖Preorder.toLE
OrderHom.toFun
toOrderHom
ext 📖DFunLike.coe
PseudoEpimorphism
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
ext
id_apply 📖mathematicalDFunLike.coe
PseudoEpimorphism
instFunLike
id
id_comp 📖mathematicalcomp
id
ext
instPseudoEpimorphismClass 📖mathematicalPseudoEpimorphismClass
PseudoEpimorphism
instFunLike
OrderHom.monotone'
exists_map_eq_of_map_le'
toFun_eq_coe 📖mathematicalOrderHom.toFun
toOrderHom
DFunLike.coe
PseudoEpimorphism
instFunLike
toOrderHom_eq_coe 📖mathematicalDFunLike.coe
OrderHom
OrderHom.instFunLike
toOrderHom
PseudoEpimorphism
instFunLike

PseudoEpimorphismClass

Theorems

NameKindAssumesProvesValidatesDepends On
exists_map_eq_of_map_le 📖Preorder.toLE
DFunLike.coe
toRelHomClass 📖mathematicalRelHomClass
Preorder.toLE
toTopHomClass 📖mathematicalTopHomClass
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
exists_map_eq_of_map_le
le_top
top_le_iff

(root)

Definitions

NameCategoryTheorems
EsakiaHom 📖CompData
12 mathmath: EsakiaHom.comp_apply, EsakiaHom.coe_comp_continuousOrderHom, EsakiaHom.coe_id, EsakiaHom.coe_comp_pseudoEpimorphism, EsakiaHom.coe_comp, EsakiaHom.coe_id_continuousOrderHom, EsakiaHom.instEsakiaHomClass, EsakiaHom.ext_iff, EsakiaHom.toContinuousOrderHom_coe, EsakiaHom.coe_id_pseudoEpimorphism, EsakiaHom.id_apply, EsakiaHom.toFun_eq_coe
EsakiaHomClass 📖CompData
1 mathmath: EsakiaHom.instEsakiaHomClass
PseudoEpimorphism 📖CompData
10 mathmath: PseudoEpimorphism.coe_id, PseudoEpimorphism.toFun_eq_coe, PseudoEpimorphism.comp_apply, PseudoEpimorphism.coe_comp, PseudoEpimorphism.instPseudoEpimorphismClass, PseudoEpimorphism.ext_iff, PseudoEpimorphism.id_apply, PseudoEpimorphism.toOrderHom_eq_coe, PseudoEpimorphism.coe_id_orderHom, PseudoEpimorphism.coe_comp_orderHom
PseudoEpimorphismClass 📖CompData
3 mathmath: OrderIsoClass.toPseudoEpimorphismClass, EsakiaHomClass.toPseudoEpimorphismClass, PseudoEpimorphism.instPseudoEpimorphismClass
instCoeTCEsakiaHomOfEsakiaHomClass 📖CompOp
instCoeTCPseudoEpimorphismOfPseudoEpimorphismClass 📖CompOp

---

← Back to Index