Documentation Verification Report

IsLUB

πŸ“ Source: Mathlib/Topology/Order/IsLUB.lean

Statistics

MetricCount
DefinitionsIsLUB
1
TheoremsisCompact_Icc, ciInf, ciInf', ciSup, ciSup', exists_seq_strictAnti_tendsto, exists_seq_strictAnti_tendsto_of_lt, exists_seq_strictMono_tendsto, exists_seq_strictMono_tendsto_of_lt, isGLB_inter_iff, isLUB_inter_iff, lowerBounds_image, upperBounds_image, exists_seq_strictAnti_tendsto, exists_seq_strictAnti_tendsto_of_lt, exists_seq_strictMono_tendsto, exists_seq_strictMono_tendsto_of_lt, isGLB_mem, isLUB_mem, lowerClosure, upperClosure, exists_seq_antitone_tendsto, exists_seq_strictAnti_tendsto_of_notMem, frequently_mem, frequently_nhds_mem, isGLB_of_tendsto, isLUB_of_tendsto, mem_closure, mem_lowerBounds_of_tendsto, mem_of_isClosed, mem_upperBounds_of_tendsto, nhdsWithin_neBot, exists_seq_monotone_tendsto, exists_seq_strictMono_tendsto_of_notMem, frequently_mem, frequently_nhds_mem, isGLB_of_tendsto, isLUB_of_tendsto, mem_closure, mem_lowerBounds_of_tendsto, mem_of_isClosed, mem_upperBounds_of_tendsto, nhdsWithin_neBot, exists_seq_strictAnti_strictMono_tendsto, exists_seq_strictAnti_tendsto, exists_seq_strictAnti_tendsto', exists_seq_strictAnti_tendsto_nhdsWithin, exists_seq_strictMono_tendsto, exists_seq_strictMono_tendsto', exists_seq_strictMono_tendsto_nhdsWithin, exists_seq_tendsto_sInf, exists_seq_tendsto_sSup, isGLB_iff_of_subset_of_subset_closure, isGLB_of_mem_closure, isGLB_of_mem_nhds, isLUB_iff_of_subset_of_subset_closure, isLUB_of_mem_closure, isLUB_of_mem_nhds, lowerClosure_eq_Iic_csSup, upperClosure_eq_Ici_csInf
60
Total61

ConditionallyCompleteLinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_Icc πŸ“–mathematicalβ€”IsCompact
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
toConditionallyCompleteLattice
β€”le_or_gt
Mathlib.Tactic.Push.not_and_eq
le_trans
pure_le_nhds
Set.Icc_self
isLUB_csSup
IsLUB.exists_between
Filter.mp_mem
Ultrafilter.compl_mem_iff_notMem
Filter.univ_mem'
nhds_eq_order
iInf_congr_Prop
Filter.mem_of_superset
le_of_not_gt
notMem_of_csSup_lt
Set.Icc_eq_empty
Ultrafilter.neBot
supSet_to_nonempty

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
ciInf πŸ“–mathematicalDense
Continuous
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”ciSup
instClosedIicTopologyOrderDual
ciInf' πŸ“–mathematicalDense
Continuous
iInf
Set.Elem
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
β€”ciSup'
instClosedIicTopologyOrderDual
ciSup πŸ“–mathematicalDense
Continuous
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Set.range
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”sSup_range
isEmpty_or_nonempty
Set.range_eq_empty
instIsEmptySubtype
IsLUB.unique
isLUB_csSup
Set.range_nonempty
isLUB_congr
upperBounds_image
isLUB_ciSup_set
BddAbove.mono
nonempty
ciSup' πŸ“–mathematicalDense
Continuous
iSup
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Set
Set.instMembership
β€”ciSup
BddAbove.mono
Set.range_comp
Subtype.range_coe_subtype
Continuous.range_subset_closure_image_dense
BddAbove.closure
Mathlib.Tactic.Contrapose.contraposeβ‚„
ciSup_of_not_bddAbove
exists_seq_strictAnti_tendsto πŸ“–mathematicalDenseStrictAnti
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.instInter
Set.Ioi
Filter.Tendsto
Filter.atTop
nhds
β€”exists_seq_strictMono_tendsto
instOrderTopologyOrderDual
OrderDual.denselyOrdered
OrderDual.noMinOrder
instFirstCountableTopologyOrderDual
exists_seq_strictAnti_tendsto_of_lt πŸ“–mathematicalDense
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictAnti
Nat.instPreorder
Set
Set.instMembership
Set.instInter
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”Set.Ioo_toDual
exists_seq_strictMono_tendsto_of_lt
instOrderTopologyOrderDual
OrderDual.denselyOrdered
instFirstCountableTopologyOrderDual
OrderDual.toDual_lt_toDual
exists_seq_strictMono_tendsto πŸ“–mathematicalDenseStrictMono
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.instInter
Set.Iio
Filter.Tendsto
Filter.atTop
nhds
β€”NoMinOrder.exists_lt
exists_seq_strictMono_tendsto_of_lt
exists_seq_strictMono_tendsto_of_lt πŸ“–mathematicalDense
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictMono
Nat.instPreorder
Set
Set.instMembership
Set.instInter
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”exists_between
OrderTopology.to_orderClosedTopology
Set.mem_inter
isLUB_inter_iff
instClosedIicTopology
isOpen_Ioo
isLUB_Ioo
IsLUB.exists_seq_strictMono_tendsto_of_notMem
FirstCountableTopology.nhds_generated_countable
isGLB_inter_iff πŸ“–mathematicalDense
IsOpen
IsGLB
Preorder.toLE
Set
Set.instInter
β€”isLUB_inter_iff
instClosedIicTopologyOrderDual
isLUB_inter_iff πŸ“–mathematicalDense
IsOpen
IsLUB
Preorder.toLE
Set
Set.instInter
β€”isLUB_iff_of_subset_of_subset_closure
open_subset_closure_inter
lowerBounds_image πŸ“–mathematicalDense
Continuous
lowerBounds
Preorder.toLE
Set.image
Set.range
β€”upperBounds_image
instClosedIicTopologyOrderDual
upperBounds_image πŸ“–mathematicalDense
Continuous
upperBounds
Preorder.toLE
Set.image
Set.range
β€”subset_antisymm
Set.instAntisymmSubset
subset_trans
Set.instIsTransSubset
Filter.Frequently.mem_of_closed
Filter.Frequently.mono
mem_closure_iff_frequently
isClosed_Iic
upperBounds_mono
Continuous.range_subset_closure_image_dense
le_rfl
Set.image_subset_range

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
exists_seq_strictAnti_tendsto πŸ“–mathematicalDenseRange
Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictAnti
Nat.instPreorder
Set
Set.instMembership
Set.Ioi
Filter.Tendsto
Filter.atTop
nhds
β€”exists_seq_strictMono_tendsto
instOrderTopologyOrderDual
OrderDual.denselyOrdered
OrderDual.noMinOrder
instFirstCountableTopologyOrderDual
Monotone.dual
exists_seq_strictAnti_tendsto_of_lt πŸ“–mathematicalDenseRange
Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
StrictAnti
Nat.instPreorder
Set
Set.instMembership
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”Set.Ioo_toDual
exists_seq_strictMono_tendsto_of_lt
instOrderTopologyOrderDual
OrderDual.denselyOrdered
instFirstCountableTopologyOrderDual
Monotone.dual
OrderDual.toDual_lt_toDual
exists_seq_strictMono_tendsto πŸ“–mathematicalDenseRange
Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictMono
Nat.instPreorder
Set
Set.instMembership
Set.Iio
Filter.Tendsto
Filter.atTop
nhds
β€”Dense.exists_seq_strictMono_tendsto
Monotone.reflect_lt
exists_seq_strictMono_tendsto_of_lt πŸ“–mathematicalDenseRange
Monotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
StrictMono
Nat.instPreorder
Set
Set.instMembership
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”Dense.exists_seq_strictMono_tendsto_of_lt
Monotone.reflect_lt

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isGLB_mem πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
β€”IsGLB.mem_of_isClosed
isLUB_mem πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
β€”IsLUB.mem_of_isClosed
lowerClosure πŸ“–mathematicalβ€”IsClosed
LowerSet.carrier
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
lowerClosure
β€”upperClosure
instOrderTopologyOrderDual
upperClosure πŸ“–mathematicalβ€”IsClosed
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
UpperSet.instSetLike
upperClosure
β€”Set.eq_empty_or_nonempty
upperClosure_empty
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
isClosed_Ici
instClosedIciTopology
upperClosure_eq_Ici_csInf
isClosed_univ
upperClosure_eq_bot

IsGLB

Theorems

NameKindAssumesProvesValidatesDepends On
exists_seq_antitone_tendsto πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Antitone
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
Set
Set.instMembership
β€”IsLUB.exists_seq_monotone_tendsto
instOrderTopologyOrderDual
exists_seq_strictAnti_tendsto_of_notMem πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Nonempty
StrictAnti
Nat.instPreorder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhds
β€”IsLUB.exists_seq_strictMono_tendsto_of_notMem
instOrderTopologyOrderDual
frequently_mem πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.Frequently
Set
Set.instMembership
nhdsWithin
Set.Ici
β€”IsLUB.frequently_mem
instOrderTopologyOrderDual
frequently_nhds_mem πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.Frequently
Set
Set.instMembership
nhds
β€”Filter.Frequently.filter_mono
frequently_mem
inf_le_left
isGLB_of_tendsto πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGLB
Preorder.toLE
Set.Nonempty
Filter.Tendsto
nhdsWithin
nhds
Set.imageβ€”IsLUB.isLUB_of_tendsto
instOrderTopologyOrderDual
instOrderClosedTopologyOrderDual
MonotoneOn.dual
isLUB_of_tendsto πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGLB
Preorder.toLE
Set.Nonempty
Filter.Tendsto
nhdsWithin
nhds
IsLUB
Set.image
β€”isGLB_of_tendsto
instOrderClosedTopologyOrderDual
mem_closure πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
closure
β€”Filter.Frequently.mem_closure
frequently_nhds_mem
mem_lowerBounds_of_tendsto πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGLB
Preorder.toLE
Filter.Tendsto
nhdsWithin
nhds
Set
Set.instMembership
lowerBounds
Set.image
β€”IsLUB.mem_upperBounds_of_tendsto
instOrderTopologyOrderDual
instOrderClosedTopologyOrderDual
MonotoneOn.dual
mem_of_isClosed πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
β€”IsClosed.closure_subset
mem_closure
mem_upperBounds_of_tendsto πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsGLB
Preorder.toLE
Filter.Tendsto
nhdsWithin
nhds
Set
Set.instMembership
upperBounds
Set.image
β€”mem_lowerBounds_of_tendsto
instOrderClosedTopologyOrderDual
nhdsWithin_neBot πŸ“–mathematicalIsGLB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.NeBot
nhdsWithin
β€”IsLUB.nhdsWithin_neBot
instOrderTopologyOrderDual

IsLUB

Theorems

NameKindAssumesProvesValidatesDepends On
exists_seq_monotone_tendsto πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Monotone
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
Set
Set.instMembership
β€”monotone_const
le_rfl
tendsto_const_nhds
exists_seq_strictMono_tendsto_of_notMem
StrictMono.monotone
LT.lt.le
exists_seq_strictMono_tendsto_of_notMem πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Nonempty
StrictMono
Nat.instPreorder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhds
β€”Filter.exists_seq_forall_of_frequently
TopologicalSpace.isCountablyGenerated_nhdsWithin
frequently_mem
Filter.Tendsto.mono_right
nhdsWithin_le_nhds
LE.le.lt_of_ne
Filter.Tendsto.eventually
lt_mem_nhds
strictMono_nat_of_lt_succ
Function.iterate_succ_apply'
Filter.Tendsto.comp
StrictMono.tendsto_atTop
Filter.Eventually.exists
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.and
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
frequently_mem πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.Frequently
Set
Set.instMembership
nhdsWithin
Set.Iic
β€”LE.le.eq_or_lt
Filter.Eventually.self_of_nhdsWithin
le_rfl
mem_nhdsLE_iff_exists_Ioc_subset'
exists_between
frequently_nhds_mem πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.Frequently
Set
Set.instMembership
nhds
β€”Filter.Frequently.filter_mono
frequently_mem
inf_le_left
isGLB_of_tendsto πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsLUB
Preorder.toLE
Set.Nonempty
Filter.Tendsto
nhdsWithin
nhds
IsGLB
Set.image
β€”isLUB_of_tendsto
instOrderClosedTopologyOrderDual
isLUB_of_tendsto πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsLUB
Preorder.toLE
Set.Nonempty
Filter.Tendsto
nhdsWithin
nhds
Set.imageβ€”mem_upperBounds_of_tendsto
le_of_tendsto
instClosedIicTopology
nhdsWithin_neBot
Filter.mem_of_superset
self_mem_nhdsWithin
Set.mem_image_of_mem
mem_closure πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
closure
β€”Filter.Frequently.mem_closure
frequently_nhds_mem
mem_lowerBounds_of_tendsto πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsLUB
Preorder.toLE
Filter.Tendsto
nhdsWithin
nhds
Set
Set.instMembership
lowerBounds
Set.image
β€”mem_upperBounds_of_tendsto
instOrderClosedTopologyOrderDual
mem_of_isClosed πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Set
Set.instMembership
β€”IsClosed.closure_subset
mem_closure
mem_upperBounds_of_tendsto πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsLUB
Preorder.toLE
Filter.Tendsto
nhdsWithin
nhds
Set
Set.instMembership
upperBounds
Set.image
β€”inter_Ici_of_mem
ge_of_tendsto
instClosedIciTopology
nhdsWithin_neBot
le_rfl
Filter.Tendsto.mono_left
nhdsWithin_mono
Set.inter_subset_left
Filter.mem_of_superset
self_mem_nhdsWithin
nhdsWithin_neBot πŸ“–mathematicalIsLUB
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
Filter.NeBot
nhdsWithin
β€”mem_closure_iff_nhdsWithin_neBot
mem_closure

(root)

Definitions

NameCategoryTheorems
IsLUB πŸ“–MathDef
92 mathmath: OrderIso.isLUB_image, isLUB_lowerBounds, lp.isLUB_norm, isLUB_singleton, IsLUB.range_of_tendsto, isLUB_of_tendsto_atBot, isLUB_iff_sSup_eq, isLUB_image2_of_isGLB_isGLB, Preorder.hasColimit_iff_hasLUB, isLUB_iff_le_iff, isGLB_inv', OrderIso.isLUB_image', IsGLB.neg, exists_lub_Iio, isLUB_iSup, Order.IsNormal.isLUB_image_Iio_of_isSuccLimit, isAtomistic_iff, DirectedOn.isLUB_sSup, isLUB_ciSup, isLUB_hasProd, Finset.isLUB_sup_id, isLUB_iff_of_subset_of_subset_closure, isLUB_pair, IsCompact.isLUB_sSup, isLUB_inv, Order.IsSuccPrelimit.isLUB_Iio, isLUB_neg', isLUB_congr, IsCompact.exists_isLUB, IsAtomistic.isLUB_atoms, Real.isLUB_of_tendsto_monotone_bddAbove, isLUB_hasProd', isGLB_inv, isLUB_Iio, isGLB_neg, GaloisConnection.isLUB_u, isGLB_upperBounds, isLUB_Ioo, IsMaxOn.isLUB, isLUB_univ, DirectedOn.isLUB_ciSup_set, isLUB_inv', IsGLB.dual, isLUB_atoms_top, isLUB_Ioc, Order.IsSuccLimit.isLUB_Iio, isLUB_of_mem_nhds, Order.isLUB_Iio_iff_isSuccPrelimit, isLUB_neg, isLUB_prod, Finset.isLUB_sup', IsGreatest.isLUB, Finset.isLUB_sup, OrderIso.isLUB_preimage, CompletePartialOrder.scottContinuous, Preorder.isLUB_of_isColimit, isLUB_hasSum', OmegaCompletePartialOrder.ωScottContinuous.isLUB, isLUB_ciSup_set, isLUB_Ico, isGLB_neg', ConditionallyCompletePartialOrderSup.isLUB_csSup_of_directed, Scott.isωSup_iff_isLUB, IsGLB.isLUB_of_tendsto, WithTop.isLUB_sSup, isLUB_Icc, Real.sSup_def, isLUB_empty_iff, isLUB_sSup, CompletePartialOrder.lubOfDirected, isLUB_of_tendsto_atTop, isLUB_csSup, isLUB_biSup, isLUB_empty, OrderIso.isLUB_preimage', isLUB_hasSum, Real.isLUB_sSup, Dense.isLUB_inter_iff, Real.exists_isLUB, isLUB_supClosure, isLUB_pi, isLUB_atoms_le, Real.isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici, DirectedOn.isLUB_csSup, isLUB_csSup', isLUB_Iic, WithTop.isLUB_sSup', IsGLB.inv, isLUB_of_mem_closure, OmegaCompletePartialOrder.isLUB_range_ωSup, Finset.isLUB_iff_isGreatest, Directed.isLUB_ciSup

Theorems

NameKindAssumesProvesValidatesDepends On
exists_seq_strictAnti_strictMono_tendsto πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictAnti
Nat.instPreorder
StrictMono
Set
Set.instMembership
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”exists_seq_strictAnti_tendsto'
exists_seq_strictMono_tendsto'
LT.lt.trans
LE.le.trans_lt
StrictAnti.antitone
zero_le
Nat.instCanonicallyOrderedAdd
exists_seq_strictAnti_tendsto πŸ“–mathematicalβ€”StrictAnti
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhds
β€”exists_seq_strictMono_tendsto
instOrderTopologyOrderDual
OrderDual.denselyOrdered
OrderDual.noMinOrder
instFirstCountableTopologyOrderDual
exists_seq_strictAnti_tendsto' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictAnti
Nat.instPreorder
Set
Set.instMembership
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”Set.Ioo_toDual
exists_seq_strictMono_tendsto'
OrderDual.denselyOrdered
instOrderTopologyOrderDual
instFirstCountableTopologyOrderDual
OrderDual.toDual_lt_toDual
exists_seq_strictAnti_tendsto_nhdsWithin πŸ“–mathematicalβ€”StrictAnti
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhdsWithin
Set.Ioi
β€”exists_seq_strictMono_tendsto_nhdsWithin
instOrderTopologyOrderDual
OrderDual.denselyOrdered
OrderDual.noMinOrder
instFirstCountableTopologyOrderDual
exists_seq_strictMono_tendsto πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhds
β€”NoMinOrder.exists_lt
exists_seq_strictMono_tendsto'
exists_seq_strictMono_tendsto' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
StrictMono
Nat.instPreorder
Set
Set.instMembership
Set.Ioo
Filter.Tendsto
Filter.atTop
nhds
β€”lt_irrefl
Set.nonempty_Ioo
IsLUB.exists_seq_strictMono_tendsto_of_notMem
FirstCountableTopology.nhds_generated_countable
isLUB_Ioo
exists_seq_strictMono_tendsto_nhdsWithin πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Filter.Tendsto
Filter.atTop
nhdsWithin
Set.Iio
β€”exists_seq_strictMono_tendsto
tendsto_nhdsWithin_mono_right
Set.range_subset_iff
tendsto_nhdsWithin_range
exists_seq_tendsto_sInf πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Antitone
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set
Set.instMembership
β€”exists_seq_tendsto_sSup
instOrderTopologyOrderDual
instFirstCountableTopologyOrderDual
exists_seq_tendsto_sSup πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Monotone
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”IsLUB.exists_seq_monotone_tendsto
FirstCountableTopology.nhds_generated_countable
isLUB_csSup
isGLB_iff_of_subset_of_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
closure
IsGLB
Preorder.toLE
β€”isLUB_iff_of_subset_of_subset_closure
instClosedIicTopologyOrderDual
isGLB_of_mem_closure πŸ“–mathematicalSet
Set.instMembership
lowerBounds
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
IsGLBβ€”isLUB_of_mem_closure
instOrderTopologyOrderDual
isGLB_of_mem_nhds πŸ“–mathematicalSet
Set.instMembership
lowerBounds
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
IsGLBβ€”isLUB_of_mem_nhds
instOrderTopologyOrderDual
isLUB_iff_of_subset_of_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
closure
IsLUB
Preorder.toLE
β€”isLUB_congr
HasSubset.Subset.antisymm
Set.instAntisymmSubset
upperBounds_mono_set
upperBounds_closure
isLUB_of_mem_closure πŸ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
closure
IsLUBβ€”isLUB_of_mem_nhds
Filter.mem_principal_self
inf_comm
ClusterPt.eq_1
mem_closure_iff_clusterPt
isLUB_of_mem_nhds πŸ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
IsLUBβ€”not_lt
Filter.inter_mem_inf
IsOpen.mem_nhds
isOpen_lt'
Filter.nonempty_of_mem
lt_of_lt_of_le
lt_irrefl
lowerClosure_eq_Iic_csSup πŸ“–mathematicalSet.Nonempty
BddAbove
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
LowerSet
LowerSet.instSetLike
lowerClosure
Set.Iic
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”upperClosure_eq_Ici_csInf
instOrderTopologyOrderDual
upperClosure_eq_Ici_csInf πŸ“–mathematicalSet.Nonempty
BddBelow
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
SetLike.coe
UpperSet
UpperSet.instSetLike
upperClosure
Set.Ici
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”Set.ext
csInf_le_of_le
IsGLB.mem_of_isClosed
isGLB_csInf

---

← Back to Index