Documentation Verification Report

IsNormal

📁 Source: Mathlib/Topology/Order/IsNormal.lean

Statistics

MetricCount
DefinitionsIsNormal, IsNormal, IsNormal
3
Theoremscontinuous, isNormal_iff_strictMono_and_continuous
2
Total5

CategoryTheory.Subgroupoid

Definitions

NameCategoryTheorems
IsNormal 📖CompData
4 mathmath: generatedNormal_isNormal, ker_isNormal, discrete_isNormal, top_isNormal

Order

Definitions

NameCategoryTheorems
IsNormal 📖CompData
30 mathmath: Ordinal.isNormal_mul_right, OrderIso.isNormal, Cardinal.isNormal_preAleph, InitialSeg.isNormal, Ordinal.isNormal_veblen, IsNormal.of_succ_lt, Ordinal.isNormal_iff_lt_succ_and_bsup_eq, Ordinal.isNormal_preOmega, Ordinal.isNormal_opow, isNormal_iff_strictMono_and_continuous, Ordinal.isNormal_deriv, Cardinal.isNormal_aleph, Ordinal.isNormal_enumOrd, Ordinal.isNormal_iff_lt_succ_and_blsub_eq, Ordinal.isNormal_veblen_zero, Ordinal.isNormal_derivFamily, Ordinal.isNormal_gamma, PrincipalSeg.isNormal, isNormal_iff', Ordinal.enumOrd_isNormal_iff_isClosed, Ordinal.isNormal_veblenWith', isNormal_iff, Cardinal.isNormal_beth, Ordinal.isNormal_add_right, Cardinal.isNormal_preBeth, Cardinal.isNormal_ord, IsNormal.id, Ordinal.IsNormal.trans, Ordinal.isNormal_iff_strictMono_and_continuous, Ordinal.isNormal_omega

Theorems

NameKindAssumesProvesValidatesDepends On
isNormal_iff_strictMono_and_continuous 📖mathematicalIsNormal
StrictMono
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Continuous
IsNormal.strictMono
IsNormal.continuous
isLUB_of_mem_closure
LT.lt.le
image_closure_subset_closure_image
Set.mem_image_of_mem
IsLUB.mem_closure
IsSuccLimit.isLUB_Iio
Set.Iio_nonempty

Order.IsNormal

Theorems

NameKindAssumesProvesValidatesDepends On
continuous 📖mathematicalOrder.IsNormalContinuousOrderTopology.continuous_iff
isClosed_compl_iff
Set.preimage_compl
Set.compl_Ioi
IsLowerSet.eq_univ_or_Iio
IsLowerSet.preimage
isLowerSet_Iic
StrictMono.monotone
strictMono
isClosed_univ
Set.eq_empty_or_nonempty
isClosed_empty
preimage_Iic
bddAbove_Iio
isClosed_Iic
instClosedIicTopology
OrderTopology.to_orderClosedTopology
IsLowerSet.isOpen
isLowerSet_Iio

Ordinal

Definitions

NameCategoryTheorems
IsNormal 📖MathDef
2 mathmath: isNormal_iff_strictMono_limit, IsNormal.refl

---

← Back to Index