Documentation Verification Report

Lattice

📁 Source: Mathlib/Topology/Order/Lattice.lean

Statistics

MetricCount
DefinitionsContinuousInf, ContinuousSup, Lattice, TopologicalLattice
4
Theoremsfinset_inf, finset_inf', finset_inf'_apply, finset_inf_apply, finset_sup, finset_sup', finset_sup'_apply, finset_sup_apply, inf, inf', sup, sup', finset_inf, finset_inf', finset_inf'_apply, finset_inf_apply, finset_sup, finset_sup', finset_sup'_apply, finset_sup_apply, inf, inf', sup, sup', continuous_inf, finset_inf, finset_inf', finset_inf'_apply, finset_inf_apply, finset_sup, finset_sup', finset_sup'_apply, finset_sup_apply, inf, inf', sup, sup', continuous_sup, finset_inf, finset_inf', finset_inf'_apply, finset_inf_apply, finset_sup, finset_sup', finset_sup'_apply, finset_sup_apply, inf, inf', sup, sup', finset_inf'_nhds, finset_inf'_nhds_apply, finset_inf_nhds, finset_inf_nhds_apply, finset_sup'_nhds, finset_sup'_nhds_apply, finset_sup_nhds, finset_sup_nhds_apply, inf_nhds, inf_nhds', sup_nhds, sup_nhds', topologicalLattice, continuousInf, continuousSup, topologicalLattice, toContinuousInf, toContinuousSup, continuous_inf, continuous_sup
70
Total74

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
finset_inf 📖mathematicalContinuousFinset.inf
Pi.instSemilatticeInf
Pi.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
continuous_iff_continuousAt
ContinuousAt.finset_inf
continuousAt
finset_inf' 📖mathematicalFinset.Nonempty
Continuous
Finset.inf'
Pi.instSemilatticeInf
continuous_iff_continuousAt
ContinuousAt.finset_inf'
continuousAt
finset_inf'_apply 📖mathematicalFinset.Nonempty
Continuous
Finset.inf'continuous_iff_continuousAt
ContinuousAt.finset_inf'_apply
continuousAt
finset_inf_apply 📖mathematicalContinuousFinset.infcontinuous_iff_continuousAt
ContinuousAt.finset_inf_apply
continuousAt
finset_sup 📖mathematicalContinuousFinset.sup
Pi.instSemilatticeSup
Pi.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
continuous_iff_continuousAt
ContinuousAt.finset_sup
continuousAt
finset_sup' 📖mathematicalFinset.Nonempty
Continuous
Finset.sup'
Pi.instSemilatticeSup
continuous_iff_continuousAt
ContinuousAt.finset_sup'
continuousAt
finset_sup'_apply 📖mathematicalFinset.Nonempty
Continuous
Finset.sup'continuous_iff_continuousAt
ContinuousAt.finset_sup'_apply
continuousAt
finset_sup_apply 📖mathematicalContinuousFinset.supcontinuous_iff_continuousAt
ContinuousAt.finset_sup_apply
continuousAt
inf 📖Continuouscomp
continuous_inf
prodMk
inf' 📖mathematicalContinuousPi.instMinForall_mathlibinf
sup 📖Continuouscomp
continuous_sup
prodMk
sup' 📖mathematicalContinuousPi.instMaxForall_mathlibsup

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
finset_inf 📖mathematicalContinuousAtFinset.inf
Pi.instSemilatticeInf
Pi.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
finset_inf_apply
finset_inf' 📖mathematicalFinset.Nonempty
ContinuousAt
Finset.inf'
Pi.instSemilatticeInf
finset_inf'_apply
finset_inf'_apply 📖mathematicalFinset.Nonempty
ContinuousAt
Finset.inf'Filter.Tendsto.finset_inf'_nhds_apply
finset_inf_apply 📖mathematicalContinuousAtFinset.infFilter.Tendsto.finset_inf_nhds_apply
finset_sup 📖mathematicalContinuousAtFinset.sup
Pi.instSemilatticeSup
Pi.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
finset_sup_apply
finset_sup' 📖mathematicalFinset.Nonempty
ContinuousAt
Finset.sup'
Pi.instSemilatticeSup
finset_sup'_apply
finset_sup'_apply 📖mathematicalFinset.Nonempty
ContinuousAt
Finset.sup'Filter.Tendsto.finset_sup'_nhds_apply
finset_sup_apply 📖mathematicalContinuousAtFinset.supFilter.Tendsto.finset_sup_nhds_apply
inf 📖ContinuousAtinf'
inf' 📖mathematicalContinuousAtPi.instMinForall_mathlibFilter.Tendsto.inf_nhds'
sup 📖ContinuousAtsup'
sup' 📖mathematicalContinuousAtPi.instMaxForall_mathlibFilter.Tendsto.sup_nhds'

ContinuousInf

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_inf 📖mathematicalContinuous
instTopologicalSpaceProd

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
finset_inf 📖mathematicalContinuousOnFinset.inf
Pi.instSemilatticeInf
Pi.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
ContinuousWithinAt.finset_inf
finset_inf' 📖mathematicalFinset.Nonempty
ContinuousOn
Finset.inf'
Pi.instSemilatticeInf
ContinuousWithinAt.finset_inf'
finset_inf'_apply 📖mathematicalFinset.Nonempty
ContinuousOn
Finset.inf'ContinuousWithinAt.finset_inf'_apply
finset_inf_apply 📖mathematicalContinuousOnFinset.infContinuousWithinAt.finset_inf_apply
finset_sup 📖mathematicalContinuousOnFinset.sup
Pi.instSemilatticeSup
Pi.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ContinuousWithinAt.finset_sup
finset_sup' 📖mathematicalFinset.Nonempty
ContinuousOn
Finset.sup'
Pi.instSemilatticeSup
ContinuousWithinAt.finset_sup'
finset_sup'_apply 📖mathematicalFinset.Nonempty
ContinuousOn
Finset.sup'ContinuousWithinAt.finset_sup'_apply
finset_sup_apply 📖mathematicalContinuousOnFinset.supContinuousWithinAt.finset_sup_apply
inf 📖ContinuousOninf'
inf' 📖mathematicalContinuousOnPi.instMinForall_mathlibContinuousWithinAt.inf'
sup 📖ContinuousOnsup'
sup' 📖mathematicalContinuousOnPi.instMaxForall_mathlibContinuousWithinAt.sup'

ContinuousSup

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_sup 📖mathematicalContinuous
instTopologicalSpaceProd

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
finset_inf 📖mathematicalContinuousWithinAtFinset.inf
Pi.instSemilatticeInf
Pi.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
finset_inf_apply
finset_inf' 📖mathematicalFinset.Nonempty
ContinuousWithinAt
Finset.inf'
Pi.instSemilatticeInf
finset_inf'_apply
finset_inf'_apply 📖mathematicalFinset.Nonempty
ContinuousWithinAt
Finset.inf'Filter.Tendsto.finset_inf'_nhds_apply
finset_inf_apply 📖mathematicalContinuousWithinAtFinset.infFilter.Tendsto.finset_inf_nhds_apply
finset_sup 📖mathematicalContinuousWithinAtFinset.sup
Pi.instSemilatticeSup
Pi.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
finset_sup_apply
finset_sup' 📖mathematicalFinset.Nonempty
ContinuousWithinAt
Finset.sup'
Pi.instSemilatticeSup
finset_sup'_apply
finset_sup'_apply 📖mathematicalFinset.Nonempty
ContinuousWithinAt
Finset.sup'Filter.Tendsto.finset_sup'_nhds_apply
finset_sup_apply 📖mathematicalContinuousWithinAtFinset.supFilter.Tendsto.finset_sup_nhds_apply
inf 📖ContinuousWithinAtinf'
inf' 📖mathematicalContinuousWithinAtPi.instMinForall_mathlibFilter.Tendsto.inf_nhds'
sup 📖ContinuousWithinAtsup'
sup' 📖mathematicalContinuousWithinAtPi.instMaxForall_mathlibFilter.Tendsto.sup_nhds'

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
finset_inf'_nhds 📖mathematicalFinset.Nonempty
Filter.Tendsto
nhds
Finset.inf'
Pi.instSemilatticeInf
finset_sup'_nhds
OrderDual.continuousSup
finset_inf'_nhds_apply 📖mathematicalFinset.Nonempty
Filter.Tendsto
nhds
Finset.inf'finset_sup'_nhds_apply
OrderDual.continuousSup
finset_inf_nhds 📖mathematicalFilter.Tendsto
nhds
Finset.inf
Pi.instSemilatticeInf
Pi.instOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
finset_sup_nhds
OrderDual.continuousSup
finset_inf_nhds_apply 📖mathematicalFilter.Tendsto
nhds
Finset.inffinset_sup_nhds_apply
OrderDual.continuousSup
finset_sup'_nhds 📖mathematicalFinset.Nonempty
Filter.Tendsto
nhds
Finset.sup'
Pi.instSemilatticeSup
Finset.Nonempty.cons_induction
Finset.singleton_nonempty
Finset.cons_nonempty
Finset.sup'_cons
sup_nhds
Finset.forall_mem_cons
finset_sup'_nhds_apply 📖mathematicalFinset.Nonempty
Filter.Tendsto
nhds
Finset.sup'finset_sup'_nhds
finset_sup_nhds 📖mathematicalFilter.Tendsto
nhds
Finset.sup
Pi.instSemilatticeSup
Pi.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Finset.eq_empty_or_nonempty
Finset.sup_empty
tendsto_const_nhds
Finset.sup'_eq_sup
finset_sup'_nhds
finset_sup_nhds_apply 📖mathematicalFilter.Tendsto
nhds
Finset.supfinset_sup_nhds
inf_nhds 📖Filter.Tendsto
nhds
inf_nhds'
inf_nhds' 📖mathematicalFilter.Tendsto
nhds
Pi.instMinForall_mathlibcomp
Continuous.tendsto
continuous_inf
prodMk_nhds
sup_nhds 📖Filter.Tendsto
nhds
sup_nhds'
sup_nhds' 📖mathematicalFilter.Tendsto
nhds
Pi.instMaxForall_mathlibcomp
Continuous.tendsto
continuous_sup
prodMk_nhds

LinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
topologicalLattice 📖mathematicalTopologicalLattice
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
continuous_min
continuous_max

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
continuousInf 📖mathematicalContinuousInf
OrderDual
instTopologicalSpace
instInf
ContinuousSup.continuous_sup
continuousSup 📖mathematicalContinuousSup
OrderDual
instTopologicalSpace
instSup
ContinuousInf.continuous_inf
topologicalLattice 📖mathematicalTopologicalLattice
OrderDual
instTopologicalSpace
instLattice
continuousInf
TopologicalLattice.toContinuousSup
continuousSup
TopologicalLattice.toContinuousInf

TopologicalLattice

Theorems

NameKindAssumesProvesValidatesDepends On
toContinuousInf 📖mathematicalContinuousInf
SemilatticeInf.toMin
Lattice.toSemilatticeInf
toContinuousSup 📖mathematicalContinuousSup
SemilatticeSup.toMax
Lattice.toSemilatticeSup

(root)

Definitions

NameCategoryTheorems
ContinuousInf 📖CompData
4 mathmath: HasSolidNorm.continuousInf, TopologicalLattice.toContinuousInf, Topology.IsLower.toContinuousInf, OrderDual.continuousInf
ContinuousSup 📖CompData
5 mathmath: TopologicalSpace.Closeds.instContinuousSup, Topology.IsUpper.toContinuousInf, HasSolidNorm.continuousSup, OrderDual.continuousSup, TopologicalLattice.toContinuousSup
Lattice 📖CompData
TopologicalLattice 📖CompData
3 mathmath: HasSolidNorm.toTopologicalLattice, OrderDual.topologicalLattice, LinearOrder.topologicalLattice

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_inf 📖mathematicalContinuous
instTopologicalSpaceProd
ContinuousInf.continuous_inf
continuous_sup 📖mathematicalContinuous
instTopologicalSpaceProd
ContinuousSup.continuous_sup

---

← Back to Index