Documentation Verification Report

LeftRightNhds

πŸ“ Source: Mathlib/Topology/Order/LeftRightNhds.lean

Statistics

MetricCount
Definitions0
Theoremsadd_atBot, add_atTop, atBot_add, atBot_mul', atTop_add, atTop_mul', mul_atBot', mul_atTop', tendsto_nhds, tendsto_nhds, mem_nhdsGE, mem_nhdsGT, mem_nhdsLE, mem_nhdsLT, TFAE_mem_nhdsGE, TFAE_mem_nhdsGT, TFAE_mem_nhdsLE, TFAE_mem_nhdsLT, countable_setOf_isolated_left, countable_setOf_isolated_left_within, countable_setOf_isolated_right, countable_setOf_isolated_right_within, eventually_abs_sub_lt, eventually_mabs_div_lt, mem_nhdsGE_iff_exists_Icc_subset, mem_nhdsGE_iff_exists_Ico_subset, mem_nhdsGE_iff_exists_Ico_subset', mem_nhdsGE_iff_exists_mem_Ioc_Ico_subset, mem_nhdsGT_iff_exists_Ioc_subset, mem_nhdsGT_iff_exists_Ioo_subset, mem_nhdsGT_iff_exists_Ioo_subset', mem_nhdsGT_iff_exists_mem_Ioc_Ioo_subset, mem_nhdsLE_iff_exists_Icc_subset, mem_nhdsLE_iff_exists_Ioc_subset, mem_nhdsLE_iff_exists_Ioc_subset', mem_nhdsLE_iff_exists_mem_Ico_Ioc_subset, mem_nhdsLT_iff_exists_Ico_subset, mem_nhdsLT_iff_exists_Ioo_subset, mem_nhdsLT_iff_exists_Ioo_subset', mem_nhdsLT_iff_exists_mem_Ico_Ioo_subset, nhdsGE_basis_Icc, nhdsGE_basis_Ico, nhdsGT_basis, nhdsGT_basis_of_exists_gt, nhdsGT_eq_bot_iff, nhdsLE_basis_Icc, nhdsLT_basis, nhdsLT_basis_of_exists_lt, nhdsLT_eq_bot_iff, nhds_basis_Icc_one_lt, nhds_basis_Icc_pos, nhds_basis_Ioo_one_lt, nhds_basis_Ioo_one_lt_of_one_lt, nhds_basis_Ioo_pos, nhds_basis_Ioo_pos_of_pos, nhds_basis_abs_sub_lt, nhds_basis_mabs_div_lt, nhds_basis_one_mabs_lt, nhds_basis_zero_abs_lt, nhds_eq_iInf_abs_sub, nhds_eq_iInf_mabs_div, orderTopology_of_nhds_abs, orderTopology_of_nhds_mabs
63
Total63

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
add_atBot πŸ“–mathematicalFilter.Tendsto
nhds
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add_atTop
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
instOrderTopologyOrderDual
add_atTop πŸ“–mathematicalFilter.Tendsto
nhds
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Filter.Subsingleton.atTop_eq
Filter.tendsto_top
NoMinOrder.exists_lt
LinearOrderedAddCommGroup.to_noMinOrder
Filter.tendsto_atTop_add_left_of_le'
Filter.Eventually.mono
eventually
lt_mem_nhds
le_of_lt
atBot_add πŸ“–mathematicalFilter.Tendsto
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add_comm
add_atBot
atBot_mul' πŸ“–mathematicalFilter.Tendsto
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul_comm
mul_atBot'
atTop_add πŸ“–mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add_comm
add_atTop
atTop_mul' πŸ“–mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul_comm
mul_atTop'
mul_atBot' πŸ“–mathematicalFilter.Tendsto
nhds
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul_atTop'
OrderDual.isOrderedMonoid
CommGroup.mul_comm
instOrderTopologyOrderDual
mul_atTop' πŸ“–mathematicalFilter.Tendsto
nhds
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Filter.Subsingleton.atTop_eq
NoMinOrder.exists_lt
LinearOrderedCommGroup.to_noMinOrder
Filter.tendsto_atTop_mul_left_of_le'
Filter.Eventually.mono
eventually
lt_mem_nhds
le_of_lt

LinearOrderedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_nhds πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”nhds_eq_iInf_abs_sub
iInf_congr_Prop
abs_sub_comm
Filter.tendsto_iInf
Filter.tendsto_principal

LinearOrderedCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_nhds πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
mabs
CommGroup.toGroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”nhds_eq_iInf_mabs_div
iInf_congr_Prop
mabs_div_comm

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nhdsGE πŸ“–mathematicalSet
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
nhdsWithin
Set.Ici
β€”Filter.mem_of_superset
Icc_mem_nhdsGE
out
mem_nhdsGT πŸ“–mathematicalSet
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
β€”nhdsWithin_mono
Set.Ioi_subset_Ici_self
mem_nhdsGE
mem_nhdsLE πŸ“–mathematicalSet
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
nhdsWithin
Set.Iic
β€”mem_nhdsGE
instClosedIciTopologyOrderDual
dual
mem_nhdsLT πŸ“–mathematicalSet
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter
Filter.instMembership
nhdsWithin
Set.Iio
β€”mem_nhdsGT
instClosedIciTopologyOrderDual
dual

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
TFAE_mem_nhdsGE πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
List.TFAE
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.Icc
Set.Ico
Set.instMembership
Set.Ioc
Set.instHasSubset
Set.Ioi
β€”nhdsWithin_Icc_eq_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
nhdsWithin_Ico_eq_nhdsGE
Filter.HasBasis.mem_iff
nhdsGE_basis_of_exists_gt
lt_min
min_le_right
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ico_subset_Ico_right
min_le_left
List.tfae_of_cycle
TFAE_mem_nhdsGT πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
List.TFAE
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
Set.Ioc
Set.Ioo
Set.instMembership
Set.instHasSubset
β€”nhdsWithin_Ioc_eq_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
nhdsWithin_Ioo_eq_nhdsGT
Filter.mem_of_superset
Ioo_mem_nhdsGT
mem_nhdsWithin_iff_exists_mem_nhds_inter
exists_Ico_subset_of_mem_nhds'
le_of_lt
List.tfae_of_cycle
TFAE_mem_nhdsLE πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
List.TFAE
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.Icc
Set.Ioc
Set.instMembership
Set.Ico
Set.instHasSubset
Set.Iio
β€”Set.Icc_toDual
Set.Ico_toDual
Set.Ioc_toDual
EquivLike.range_eq_univ
TFAE_mem_nhdsGE
instOrderTopologyOrderDual
LT.lt.dual
TFAE_mem_nhdsLT πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
List.TFAE
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iio
Set.Ico
Set.Ioo
Set.instMembership
Set.instHasSubset
β€”Set.Ioc_toDual
Set.Ioo_toDual
EquivLike.range_eq_univ
TFAE_mem_nhdsGT
instOrderTopologyOrderDual
LT.lt.dual
countable_setOf_isolated_left πŸ“–mathematicalβ€”Set.Countable
setOf
Filter
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter.instBot
β€”countable_setOf_isolated_right
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_setOf_isolated_left_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Filter
nhdsWithin
Set.instInter
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter.instBot
β€”countable_setOf_isolated_right_within
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
countable_setOf_isolated_right πŸ“–mathematicalβ€”Set.Countable
setOf
Filter
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter.instBot
β€”Set.Countable.union
Set.Subsingleton.countable
Set.subsingleton_isTop
countable_setOf_covBy_right
countable_setOf_isolated_right_within πŸ“–mathematicalβ€”Set.Countable
setOf
Set
Set.instMembership
Filter
nhdsWithin
Set.instInter
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter.instBot
β€”exists_Ico_subset_of_mem_nhds
Mathlib.Tactic.Contrapose.contrapose₁
Set.Nonempty.mono
LT.lt.le
Set.PairwiseDisjoint.countable_of_Ioo
Set.disjoint_iff_forall_ne
LT.lt.ne
LT.lt.trans
LT.lt.trans_le
lt_of_le_of_ne
Disjoint.symm
Function.sometimes_spec
Set.Countable.mono
Set.Subsingleton.countable
Set.subsingleton_isTop
eventually_abs_sub_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Filter.Eventually
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
nhds
β€”Filter.mem_iInf_of_mem
abs_sub_comm
Filter.mem_principal_self
nhds_eq_iInf_abs_sub
eventually_mabs_div_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Filter.Eventually
mabs
CommGroup.toGroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
nhds
β€”Filter.mem_iInf_of_mem
mabs_div_comm
nhds_eq_iInf_mabs_div
mem_nhdsGE_iff_exists_Icc_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.instHasSubset
Set.Icc
β€”Filter.HasBasis.mem_iff
nhdsGE_basis_Icc
mem_nhdsGE_iff_exists_Ico_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Ioi
Set.instHasSubset
Set.Ico
β€”NoMaxOrder.exists_gt
mem_nhdsGE_iff_exists_Ico_subset'
mem_nhdsGE_iff_exists_Ico_subset' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.instMembership
Set.Ioi
Set.instHasSubset
Set.Ico
β€”List.TFAE.out
TFAE_mem_nhdsGE
zero_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
mem_nhdsGE_iff_exists_mem_Ioc_Ico_subset πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.instMembership
Set.Ioc
Set.instHasSubset
Set.Ico
β€”List.TFAE.out
TFAE_mem_nhdsGE
zero_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
mem_nhdsGT_iff_exists_Ioc_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.instHasSubset
Set.Ioc
β€”mem_nhdsGT_iff_exists_Ioo_subset
exists_between
lt_of_le_of_lt
Set.Subset.trans
Set.Ioo_subset_Ioc_self
mem_nhdsGT_iff_exists_Ioo_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.instHasSubset
Set.Ioo
β€”NoMaxOrder.exists_gt
mem_nhdsGT_iff_exists_Ioo_subset'
mem_nhdsGT_iff_exists_Ioo_subset' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
Set.instMembership
Set.instHasSubset
Set.Ioo
β€”List.TFAE.out
TFAE_mem_nhdsGT
mem_nhdsGT_iff_exists_mem_Ioc_Ioo_subset πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ioi
Set.instMembership
Set.Ioc
Set.instHasSubset
Set.Ioo
β€”List.TFAE.out
TFAE_mem_nhdsGT
mem_nhdsLE_iff_exists_Icc_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.instHasSubset
Set.Icc
β€”mem_nhdsGE_iff_exists_Icc_subset
instOrderTopologyOrderDual
OrderDual.noMaxOrder
OrderDual.denselyOrdered
Set.Icc_toDual
EquivLike.range_eq_univ
mem_nhdsLE_iff_exists_Ioc_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.Iio
Set.instHasSubset
Set.Ioc
β€”NoMinOrder.exists_lt
mem_nhdsLE_iff_exists_Ioc_subset'
mem_nhdsLE_iff_exists_Ioc_subset' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.instMembership
Set.Iio
Set.instHasSubset
Set.Ioc
β€”List.TFAE.out
TFAE_mem_nhdsLE
zero_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
mem_nhdsLE_iff_exists_mem_Ico_Ioc_subset πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.instMembership
Set.Ico
Set.instHasSubset
Set.Ioc
β€”List.TFAE.out
TFAE_mem_nhdsLE
zero_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
mem_nhdsLT_iff_exists_Ico_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.instHasSubset
Set.Ico
β€”mem_nhdsGT_iff_exists_Ioc_subset
instOrderTopologyOrderDual
OrderDual.noMaxOrder
OrderDual.denselyOrdered
Set.Ioc_toDual
EquivLike.range_eq_univ
mem_nhdsLT_iff_exists_Ioo_subset πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.instHasSubset
Set.Ioo
β€”NoMinOrder.exists_lt
mem_nhdsLT_iff_exists_Ioo_subset'
mem_nhdsLT_iff_exists_Ioo_subset' πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iio
Set.instMembership
Set.instHasSubset
Set.Ioo
β€”List.TFAE.out
TFAE_mem_nhdsLT
mem_nhdsLT_iff_exists_mem_Ico_Ioo_subset πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iio
Set.instMembership
Set.Ico
Set.instHasSubset
Set.Ioo
β€”List.TFAE.out
TFAE_mem_nhdsLT
nhdsGE_basis_Icc πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Icc
β€”Filter.HasBasis.to_hasBasis
nhdsGE_basis
Set.Icc_subset_Ico_right
exists_between
Set.Ico_subset_Icc_self
nhdsGE_basis_Ico πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ico
β€”mem_nhdsGE_iff_exists_Ico_subset
nhdsGT_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
β€”nhdsGT_basis_of_exists_gt
NoMaxOrder.exists_gt
nhdsGT_basis_of_exists_gt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhdsWithin
Set.Ioi
Set.Ioo
β€”mem_nhdsGT_iff_exists_Ioo_subset'
nhdsGT_eq_bot_iff πŸ“–mathematicalβ€”nhdsWithin
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter
Filter.instBot
IsTop
Preorder.toLE
CovBy
Preorder.toLT
β€”IsMax.Ioi_eq
IsTop.isMax
nhdsWithin_empty
Filter.HasBasis.eq_bot_iff
nhdsGT_basis_of_exists_gt
not_isMax_iff
isTop_iff_isMax
SemilatticeSup.instIsDirectedOrder
nhdsLE_basis_Icc πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Icc
β€”mem_nhdsLE_iff_exists_Icc_subset
nhdsLT_basis πŸ“–mathematicalβ€”Filter.HasBasis
nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
Set.Ioo
β€”nhdsLT_basis_of_exists_lt
NoMinOrder.exists_lt
nhdsLT_basis_of_exists_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.HasBasis
nhdsWithin
Set.Iio
Set.Ioo
β€”mem_nhdsLT_iff_exists_Ioo_subset'
nhdsLT_eq_bot_iff πŸ“–mathematicalβ€”nhdsWithin
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
Filter
Filter.instBot
IsBot
Preorder.toLE
CovBy
Preorder.toLT
β€”ofDual_covBy_ofDual_iff
nhdsGT_eq_bot_iff
instOrderTopologyOrderDual
nhds_basis_Icc_one_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set.Icc
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
β€”Filter.HasBasis.to_hasBasis
nhds_basis_Ioo_one_lt
exists_between
Set.Icc_subset_Ioo
div_lt_div_left'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
mul_lt_mul_right
Set.Ioo_subset_Icc_self
nhds_basis_Icc_pos πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.Icc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”Filter.HasBasis.to_hasBasis
nhds_basis_Ioo_pos
exists_between
Set.Icc_subset_Ioo
sub_lt_sub_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_lt_add_right
Set.Ioo_subset_Icc_self
nhds_basis_Ioo_one_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Set.Ioo
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
β€”IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
nhds_basis_mabs_div_lt
nhds_basis_Ioo_one_lt_of_one_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Filter.HasBasis
nhds
Preorder.toLE
Set.Ioo
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
β€”Filter.HasBasis.restrict
nhds_basis_Ioo_one_lt
lt_min
min_le_left
Set.Ioo_subset_Ioo
div_le_div_left'
IsOrderedMonoid.toMulLeftMono
covariant_swap_mul_of_covariant_mul
min_le_right
mul_le_mul_right
nhds_basis_Ioo_pos πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.Ioo
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
abs_lt
neg_lt_sub_iff_lt_add
nhds_basis_abs_sub_lt
nhds_basis_Ioo_pos_of_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Filter.HasBasis
nhds
Preorder.toLE
Set.Ioo
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
β€”Filter.HasBasis.restrict
nhds_basis_Ioo_pos
lt_min
min_le_left
Set.Ioo_subset_Ioo
sub_le_sub_left
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
min_le_right
add_le_add_right
nhds_basis_abs_sub_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
setOf
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”nhds_eq_iInf_abs_sub
iInf_congr_Prop
abs_sub_comm
Filter.hasBasis_biInf_principal'
lt_min
LT.lt.trans_le
min_le_left
min_le_right
NoMaxOrder.exists_gt
nhds_basis_mabs_div_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
setOf
mabs
CommGroup.toGroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”nhds_eq_iInf_mabs_div
iInf_congr_Prop
mabs_div_comm
Filter.hasBasis_biInf_principal'
lt_min
LT.lt.trans_le
min_le_left
min_le_right
NoMaxOrder.exists_gt
nhds_basis_one_mabs_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
mabs
CommGroup.toGroup
β€”div_one
nhds_basis_mabs_div_lt
nhds_basis_zero_abs_lt πŸ“–mathematicalβ€”Filter.HasBasis
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
abs
AddCommGroup.toAddGroup
β€”sub_zero
nhds_basis_abs_sub_lt
nhds_eq_iInf_abs_sub πŸ“–mathematicalβ€”nhds
iInf
Filter
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Filter.principal
setOf
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”nhds_eq_order
iInf_congr_Prop
abs_lt
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
Filter.inf_principal
iInf_inf_eq
Equiv.iInf_congr
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_lt_sub_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Set.mem_Iio
neg_sub
Set.mem_Ioi
inf_comm
nhds_eq_iInf_mabs_div πŸ“–mathematicalβ€”nhds
iInf
Filter
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Filter.principal
setOf
mabs
CommGroup.toGroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”nhds_eq_order
iInf_congr_Prop
IsOrderedMonoid.toMulLeftMono
covariant_swap_mul_of_covariant_mul
iInf_inf_eq
Equiv.iInf_congr
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
inv_div
inf_comm
orderTopology_of_nhds_abs πŸ“–mathematicalnhds
iInf
Filter
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Filter.principal
setOf
abs
AddCommGroup.toAddGroup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
OrderTopologyβ€”TopologicalSpace.ext_nhds
nhds_eq_iInf_abs_sub
orderTopology_of_nhds_mabs πŸ“–mathematicalnhds
iInf
Filter
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Filter.principal
setOf
mabs
CommGroup.toGroup
DivInvMonoid.toDiv
Group.toDivInvMonoid
OrderTopologyβ€”TopologicalSpace.ext_nhds
nhds_eq_iInf_mabs_div

---

← Back to Index