Documentation Verification Report

LiminfLimsup

πŸ“ Source: Mathlib/Topology/Order/LiminfLimsup.lean

Statistics

MetricCount
DefinitionsBoundedGENhdsClass, BoundedLENhdsClass
2
Theoremsmap_liminf_of_continuousAt, map_limsInf_of_continuousAt, map_limsSup_of_continuousAt, map_limsup_of_continuousAt, isBounded_ge_nhds, of_closedIicTopology, isBounded_le_nhds, of_closedIciTopology, bddAbove_range, bddAbove_range_of_cofinite, bddBelow_range, bddBelow_range_of_cofinite, isBoundedUnder_ge, isBoundedUnder_le, isCoboundedUnder_ge, isCoboundedUnder_le, liminf_eq, limsup_eq, map_liminf_of_continuousAt, map_limsInf_of_continuousAt, map_limsSup_of_continuousAt, map_limsup_of_continuousAt, to_BoundedGENhdsClass, to_BoundedLENhdsClass, instBoundedGENhdsClass, instBoundedLENhdsClass, instBoundedGENhdsClass, instBoundedLENhdsClass, eventually_le_limsup, eventually_liminf_le, instBoundedGENhdsClassOrderDual, instBoundedLENhdsClassOrderDual, isBounded_ge_nhds, isBounded_le_nhds, isCobounded_ge_nhds, isCobounded_le_nhds, le_nhds_of_limsSup_eq_limsInf, liminf_eq_top, limsInf_eq_of_le_nhds, limsInf_nhds, limsSup_eq_of_le_nhds, limsSup_nhds, limsup_eq_bot, tendsto_of_le_liminf_of_limsup_le, tendsto_of_liminf_eq_limsup, tendsto_of_no_upcrossings
46
Total48

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
map_liminf_of_continuousAt πŸ“–mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.liminf
Filter.IsCoboundedUnder
Preorder.toLE
Filter.IsBoundedUnder
Filter.limsupβ€”map_limsInf_of_continuousAt
Filter.map_neBot
map_limsInf_of_continuousAt πŸ“–mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsInf
Filter.IsCobounded
Preorder.toLE
Filter.IsBounded
Filter.limsupβ€”map_limsSup_of_continuousAt
instOrderTopologyOrderDual
dual
map_limsSup_of_continuousAt πŸ“–mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsSup
Filter.IsBounded
Preorder.toLE
Filter.IsCobounded
Filter.liminfβ€”le_antisymm
Filter.limsSup.eq_1
map_csInf_of_continuousAt
OrderTopology.to_orderClosedTopology
le_of_forall_lt
exists_lt_of_lt_csSup
Set.mem_image_of_mem
lt_csSup_of_lt
isCoboundedUnder_ge_of_isCobounded
Filter.mp_mem
Filter.univ_mem'
Filter.Frequently.mono
Filter.frequently_lt_of_lt_limsSup
Filter.liminf_le_of_frequently_le
Filter.IsBounded.isBoundedUnder
lt_irrefl
lt_of_le_of_lt
Filter.Frequently.of_forall
exists_Ioc_subset_of_mem_nhds
tendsto_order
ContinuousAt.tendsto
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
LT.lt.le
LE.le.trans_lt
map_limsup_of_continuousAt πŸ“–mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsup
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsCoboundedUnder
Filter.liminfβ€”map_limsSup_of_continuousAt
Filter.map_neBot

BoundedGENhdsClass

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_ge_nhds πŸ“–mathematicalβ€”Filter.IsBounded
Preorder.toLE
nhds
β€”β€”
of_closedIicTopology πŸ“–mathematicalβ€”BoundedGENhdsClass
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”instBoundedGENhdsClassOrderDual
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopologyOrderDual

BoundedLENhdsClass

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_le_nhds πŸ“–mathematicalβ€”Filter.IsBounded
Preorder.toLE
nhds
β€”β€”
of_closedIciTopology πŸ“–mathematicalβ€”BoundedLENhdsClass
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isTop_or_exists_gt
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.of_forall
eventually_le_nhds

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_range πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
BddAbove
Preorder.toLE
Set.range
β€”Filter.IsBoundedUnder.bddAbove_range
isBoundedUnder_le
bddAbove_range_of_cofinite πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
nhds
BddAbove
Preorder.toLE
Set.range
β€”Filter.IsBoundedUnder.bddAbove_range_of_cofinite
isBoundedUnder_le
bddBelow_range πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
BddBelow
Preorder.toLE
Set.range
β€”Filter.IsBoundedUnder.bddBelow_range
isBoundedUnder_ge
bddBelow_range_of_cofinite πŸ“–mathematicalFilter.Tendsto
Filter.cofinite
nhds
BddBelow
Preorder.toLE
Set.range
β€”Filter.IsBoundedUnder.bddBelow_range_of_cofinite
isBoundedUnder_ge
isBoundedUnder_ge πŸ“–mathematicalFilter.Tendsto
nhds
Filter.IsBoundedUnder
Preorder.toLE
β€”Filter.IsBounded.mono
isBounded_ge_nhds
isBoundedUnder_le πŸ“–mathematicalFilter.Tendsto
nhds
Filter.IsBoundedUnder
Preorder.toLE
β€”Filter.IsBounded.mono
isBounded_le_nhds
isCoboundedUnder_ge πŸ“–mathematicalFilter.Tendsto
nhds
Filter.IsCoboundedUnder
Preorder.toLE
β€”Filter.IsBounded.isCobounded_flip
instIsTransLe
Filter.map_neBot
isBoundedUnder_le
isCoboundedUnder_le πŸ“–mathematicalFilter.Tendsto
nhds
Filter.IsCoboundedUnder
Preorder.toLE
β€”Filter.IsBounded.isCobounded_flip
instIsTransGe
Filter.map_neBot
isBoundedUnder_ge
liminf_eq πŸ“–mathematicalFilter.Tendsto
nhds
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”limsInf_eq_of_le_nhds
Filter.map_neBot
limsup_eq πŸ“–mathematicalFilter.Tendsto
nhds
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”limsSup_eq_of_le_nhds
Filter.map_neBot

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
map_liminf_of_continuousAt πŸ“–β€”Monotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.liminf
Filter.IsCoboundedUnder
Preorder.toLE
Filter.IsBoundedUnder
β€”β€”map_limsInf_of_continuousAt
Filter.map_neBot
map_limsInf_of_continuousAt πŸ“–mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsInf
Filter.IsCobounded
Preorder.toLE
Filter.IsBounded
Filter.liminfβ€”Antitone.map_limsSup_of_continuousAt
instOrderTopologyOrderDual
dual
map_limsSup_of_continuousAt πŸ“–mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsSup
Filter.IsBounded
Preorder.toLE
Filter.IsCobounded
Filter.limsupβ€”Antitone.map_limsSup_of_continuousAt
instOrderTopologyOrderDual
map_limsup_of_continuousAt πŸ“–β€”Monotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ContinuousAt
Filter.limsup
Filter.IsBoundedUnder
Preorder.toLE
Filter.IsCoboundedUnder
β€”β€”map_limsSup_of_continuousAt
Filter.map_neBot

OrderBot

Theorems

NameKindAssumesProvesValidatesDepends On
to_BoundedGENhdsClass πŸ“–mathematicalβ€”BoundedGENhdsClassβ€”Filter.isBounded_ge_of_bot

OrderTop

Theorems

NameKindAssumesProvesValidatesDepends On
to_BoundedLENhdsClass πŸ“–mathematicalβ€”BoundedLENhdsClassβ€”Filter.isBounded_le_of_top

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instBoundedGENhdsClass πŸ“–mathematicalBoundedGENhdsClasspreorder
topologicalSpace
β€”BoundedLENhdsClass.isBounded_le_nhds
instBoundedLENhdsClass
instBoundedLENhdsClassOrderDual
instBoundedLENhdsClass πŸ“–mathematicalBoundedLENhdsClasspreorder
topologicalSpace
β€”nhds_pi
Filter.eventually_pi
isBounded_le_nhds

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instBoundedGENhdsClass πŸ“–mathematicalβ€”BoundedGENhdsClass
instPreorder
instTopologicalSpaceProd
β€”BoundedLENhdsClass.isBounded_le_nhds
instBoundedLENhdsClass
instBoundedLENhdsClassOrderDual
instBoundedLENhdsClass πŸ“–mathematicalβ€”BoundedLENhdsClass
instPreorder
instTopologicalSpaceProd
β€”isBounded_le_nhds
nhds_prod_eq

(root)

Definitions

NameCategoryTheorems
BoundedGENhdsClass πŸ“–CompData
4 mathmath: instBoundedGENhdsClassOrderDual, OrderBot.to_BoundedGENhdsClass, Prod.instBoundedGENhdsClass, BoundedGENhdsClass.of_closedIicTopology
BoundedLENhdsClass πŸ“–CompData
4 mathmath: BoundedLENhdsClass.of_closedIciTopology, Prod.instBoundedLENhdsClass, instBoundedLENhdsClassOrderDual, OrderTop.to_BoundedLENhdsClass

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_le_limsup πŸ“–mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Eventually
Filter.limsup
β€”isTop_or_exists_gt
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.of_forall
IsGLB.exists_seq_antitone_tendsto
FirstCountableTopology.nhds_generated_countable
Filter.eventually_lt_of_limsup_lt
Filter.Eventually.mono
eventually_countable_forall
instCountableNat
ge_of_tendsto
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
LT.lt.le
le_of_lt
Filter.mp_mem
Filter.univ_mem'
Mathlib.Tactic.Contrapose.contrapose₁
eventually_liminf_le πŸ“–mathematicalFilter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Eventually
Filter.liminf
β€”eventually_le_limsup
instOrderTopologyOrderDual
instFirstCountableTopologyOrderDual
instBoundedGENhdsClassOrderDual πŸ“–mathematicalβ€”BoundedGENhdsClass
OrderDual
OrderDual.instPreorder
OrderDual.instTopologicalSpace
β€”isBounded_le_nhds
instBoundedLENhdsClassOrderDual πŸ“–mathematicalβ€”BoundedLENhdsClass
OrderDual
OrderDual.instPreorder
OrderDual.instTopologicalSpace
β€”isBounded_ge_nhds
isBounded_ge_nhds πŸ“–mathematicalβ€”Filter.IsBounded
Preorder.toLE
nhds
β€”BoundedGENhdsClass.isBounded_ge_nhds
isBounded_le_nhds πŸ“–mathematicalβ€”Filter.IsBounded
Preorder.toLE
nhds
β€”BoundedLENhdsClass.isBounded_le_nhds
isCobounded_ge_nhds πŸ“–mathematicalβ€”Filter.IsCobounded
Preorder.toLE
nhds
β€”Filter.IsBounded.isCobounded_flip
instIsTransLe
nhds_neBot
isBounded_le_nhds
isCobounded_le_nhds πŸ“–mathematicalβ€”Filter.IsCobounded
Preorder.toLE
nhds
β€”Filter.IsBounded.isCobounded_flip
instIsTransGe
nhds_neBot
isBounded_ge_nhds
le_nhds_of_limsSup_eq_limsInf πŸ“–mathematicalFilter.IsBounded
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.limsSup
Filter.limsInf
Filter
Filter.instPartialOrder
nhds
β€”tendsto_order
Filter.gt_mem_sets_of_limsInf_gt
Filter.lt_mem_sets_of_limsSup_lt
liminf_eq_top πŸ“–mathematicalβ€”Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
Order.Coframe.toCoheytingAlgebra
CompleteDistribLattice.toCoframe
CompletelyDistribLattice.toCompleteDistribLattice
CompleteLinearOrder.toCompletelyDistribLattice
CoheytingAlgebra.toOrderTop
Filter.EventuallyEq
Pi.instTopForall
β€”limsup_eq_bot
instFirstCountableTopologyOrderDual
instOrderTopologyOrderDual
limsInf_eq_of_le_nhds πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.limsInf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”Filter.IsBounded.mono
isBounded_ge_nhds
BoundedGENhdsClass.of_closedIicTopology
instClosedIicTopology
OrderTopology.to_orderClosedTopology
isBounded_le_nhds
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
le_antisymm
Filter.limsInf_le_limsSup
Filter.limsSup_le_limsSup_of_le
Filter.IsBounded.isCobounded_flip
instIsTransGe
limsSup_nhds
limsInf_nhds
Filter.limsInf_le_limsInf_of_le
instIsTransLe
limsInf_nhds πŸ“–mathematicalβ€”Filter.limsInf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
nhds
β€”limsSup_nhds
instOrderTopologyOrderDual
limsSup_eq_of_le_nhds πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
Filter.limsSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”limsInf_eq_of_le_nhds
instOrderTopologyOrderDual
limsSup_nhds πŸ“–mathematicalβ€”Filter.limsSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
nhds
β€”csInf_eq_of_forall_ge_of_forall_gt_exists_lt
isBounded_le_nhds
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
OrderTopology.to_orderClosedTopology
mem_of_mem_nhds
dense_or_discrete
ge_mem_nhds
Filter.sets_of_superset
gt_mem_nhds
limsup_eq_bot πŸ“–mathematicalβ€”Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompletelyDistribLattice.toCompleteDistribLattice
CompleteLinearOrder.toCompletelyDistribLattice
HeytingAlgebra.toOrderBot
Filter.EventuallyEq
Pi.instBotForall
β€”Filter.Eventually.mono
Filter.EventuallyLE.trans
eventually_le_limsup
Filter.isBounded_le_of_top
Filter.Eventually.of_forall
Eq.le
le_antisymm
bot_le
Filter.limsup_congr
Filter.limsup_const_bot
tendsto_of_le_liminf_of_limsup_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.liminf
Filter.limsup
Filter.IsBoundedUnder
Filter.Tendsto
nhds
β€”Filter.eq_or_neBot
Filter.tendsto_bot
tendsto_of_liminf_eq_limsup
le_antisymm
le_trans
Filter.liminf_le_limsup
tendsto_of_liminf_eq_limsup πŸ“–mathematicalFilter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.limsup
Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
Filter.Tendsto
nhds
β€”le_nhds_of_limsSup_eq_limsInf
tendsto_of_no_upcrossings πŸ“–mathematicalDense
Filter.Frequently
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.IsBoundedUnder
Preorder.toLE
Filter.Tendsto
nhds
β€”Filter.eq_or_neBot
Filter.tendsto_bot
tendsto_of_le_liminf_of_limsup_le
dense_iff_inter_open
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.nonempty_Ioo
Filter.frequently_lt_of_liminf_lt
Filter.IsBounded.isCobounded_ge
Filter.map_neBot
Filter.frequently_lt_of_lt_limsup
Filter.IsBounded.isCobounded_le
le_rfl

---

← Back to Index