Documentation Verification Report

LowerUpperTopology

📁 Source: Mathlib/Topology/Order/LowerUpperTopology.lean

Statistics

MetricCount
DefinitionsIsLower, lowerBasis, withLowerHomeomorph, IsUpper, upperBasis, withUpperHomeomorph, WithLower, instInhabited, instLinearOrder, instPartialOrder, instPreorder, instTopologicalSpace, ofLower, rec, toDualHomeomorph, toLower, WithUpper, instInhabited, instLinearOrder, instPartialOrder, instPreorder, instTopologicalSpace, ofUpper, rec, toUpper, lower, upper
27
TheoremsinstIsLower, instIsUpper, closure_singleton, continuous_iff_Ici, instClosedIciTopology, isClosed_upperClosure, isLowerSet_of_isOpen, isOpen_iff_generate_Ici_compl, isTopologicalBasis, isTopologicalBasis_insert_univ_subbasis, isTopologicalSpace_basis, isUpperSet_of_isClosed, t0Space, tendsto_nhds_iff_lt, tendsto_nhds_iff_not_le, toContinuousInf, topology_eq, topology_eq_lowerTopology, closure_singleton, continuous_iff_Iic, instClosedIicTopology, isClosed_lowerClosure, isLowerSet_of_isClosed, isOpen_iff_generate_Iic_compl, isTopologicalBasis, isTopologicalBasis_insert_univ_subbasis, isTopologicalSpace_basis, isUpperSet_of_isOpen, t0Space, tendsto_nhds_iff_lt, tendsto_nhds_iff_not_le, toContinuousInf, topology_eq, topology_eq_upperTopology, continuous_toLower, instNonempty, isOpen_def, isOpen_preimage_ofLower, ofLower_inj, ofLower_le_ofLower, ofLower_lt_ofLower, ofLower_symm, ofLower_toLower, toLower_inj, toLower_le_toLower, toLower_lt_toLower, toLower_ofLower, toLower_symm, continuous_toUpper, instNonempty, isOpen_def, isOpen_preimage_ofUpper, ofUpper_inj, ofUpper_le_ofUpper, ofUpper_lt_ofUpper, ofUpper_symm, ofUpper_toUpper, toUpper_inj, toUpper_le_toUpper, toUpper_lt_toUpper, toUpper_ofUpper, toUpper_symm, instIsLowerProd, instIsLowerWithLower, instIsUpperProd, instIsUpperWithUpper, isLower_orderDual, isUpper_orderDual, instIsUpperProp, continuous, continuous
71
Total98

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLower 📖mathematicalTopology.IsLower
OrderDual
instTopologicalSpace
instPreorder
Topology.IsUpper.topology_eq_upperTopology
instIsUpper 📖mathematicalTopology.IsUpper
OrderDual
instTopologicalSpace
instPreorder
Topology.IsLower.topology_eq_lowerTopology

Topology

Definitions

NameCategoryTheorems
IsLower 📖CompData
5 mathmath: isUpper_orderDual, instIsLowerProd, OrderDual.instIsLower, instIsLowerWithLower, isLower_orderDual
IsUpper 📖CompData
6 mathmath: isUpper_orderDual, OrderDual.instIsUpper, instIsUpperProp, instIsUpperWithUpper, instIsUpperProd, isLower_orderDual
WithLower 📖CompOp
15 mathmath: WithLower.ofLower_symm, WithLower.toLower_inj, WithLower.isOpen_def, WithLower.instNonempty, WithLower.ofLower_le_ofLower, WithLower.toLower_le_toLower, instIsLowerWithLower, WithLower.ofLower_inj, WithLower.isOpen_preimage_ofLower, WithLower.toLower_ofLower, WithLower.toLower_lt_toLower, WithLower.continuous_toLower, WithLower.toLower_symm, WithLower.ofLower_lt_ofLower, WithLower.ofLower_toLower
WithUpper 📖CompOp
15 mathmath: WithUpper.continuous_toUpper, WithUpper.toUpper_ofUpper, WithUpper.ofUpper_lt_ofUpper, WithUpper.ofUpper_le_ofUpper, WithUpper.instNonempty, instIsUpperWithUpper, WithUpper.isOpen_preimage_ofUpper, WithUpper.ofUpper_symm, WithUpper.ofUpper_toUpper, WithUpper.toUpper_lt_toUpper, WithUpper.ofUpper_inj, WithUpper.toUpper_inj, WithUpper.toUpper_symm, WithUpper.isOpen_def, WithUpper.toUpper_le_toUpper
lower 📖CompOp
6 mathmath: IsLower.topology_eq_lowerTopology, WithLower.isOpen_def, scottHausdorff_le_lower, IsLower.topology_eq, WithLower.isOpen_preimage_ofLower, lawson_le_lower
upper 📖CompOp
5 mathmath: IsUpper.topology_eq_upperTopology, WithUpper.isOpen_preimage_ofUpper, IsScott.scott_eq_upper_of_completeLinearOrder, WithUpper.isOpen_def, IsUpper.topology_eq

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLowerProd 📖mathematicalIsLower
instTopologicalSpaceProd
Prod.instPreorder
le_antisymm
le_generateFrom
IsClosed.isOpen_compl
IsClosed.prod
isClosed_Ici
IsLower.instClosedIciTopology
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
TopologicalSpace.IsTopologicalBasis.prod
IsLower.isTopologicalBasis
TopologicalSpace.le_generateFrom_iff_subset_isOpen
Set.image2_subset_iff
coe_upperClosure
Set.compl_iUnion
Set.preimage_iInter
Set.iInter_congr_Prop
IsOpen.inter
Set.Finite.isOpen_biInter
Set.Ici_bot
Set.prod_univ
Set.univ_prod
instIsLowerWithLower 📖mathematicalIsLower
WithLower
WithLower.instTopologicalSpace
WithLower.instPreorder
instIsUpperProd 📖mathematicalIsUpper
instTopologicalSpaceProd
Prod.instPreorder
instIsLowerProd
OrderDual.instIsLower
IsLower.topology_eq_lowerTopology
instIsUpperWithUpper 📖mathematicalIsUpper
WithUpper
WithUpper.instTopologicalSpace
WithUpper.instPreorder
isLower_orderDual 📖mathematicalIsLower
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instPreorder
IsUpper
isUpper_orderDual
isUpper_orderDual 📖mathematicalIsUpper
OrderDual
OrderDual.instTopologicalSpace
OrderDual.instPreorder
IsLower
OrderDual.instIsLower
OrderDual.instIsUpper

Topology.IsLower

Definitions

NameCategoryTheorems
lowerBasis 📖CompOp
1 mathmath: isTopologicalBasis
withLowerHomeomorph 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton 📖mathematicalclosure
Set
Set.instSingletonSet
Set.Ici
Set.Subset.antisymm
closure_minimal
Eq.ge
isClosed_Ici
instClosedIciTopology
IsUpperSet.Ici_subset
isUpperSet_of_isClosed
isClosed_closure
subset_closure
continuous_iff_Ici 📖mathematicalContinuous
IsClosed
Set.preimage
Set.Ici
topology_eq
instClosedIciTopology 📖mathematicalClosedIciTopologyisOpen_compl_iff
isOpen_iff_generate_Ici_compl
isClosed_upperClosure 📖mathematicalIsClosed
SetLike.coe
UpperSet
Preorder.toLE
UpperSet.instSetLike
upperClosure
UpperSet.coe_iInf
Set.Finite.isClosed_biUnion
isClosed_Ici
instClosedIciTopology
isLowerSet_of_isOpen 📖mathematicalIsOpenIsLowerSet
Preorder.toLE
isOpen_iff_generate_Ici_compl
IsUpperSet.compl
isUpperSet_Ici
isLowerSet_univ
IsLowerSet.inter
isLowerSet_sUnion
isOpen_iff_generate_Ici_compl 📖mathematicalIsOpen
TopologicalSpace.GenerateOpen
setOf
Set
Compl.compl
Set.instCompl
Set.Ici
topology_eq
isTopologicalBasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
lowerBasis
coe_upperClosure
Set.compl_iUnion
Set.ext
Set.Finite.image
Set.image_subset_iff
Set.sInter_image
Set.finite_range
Set.Finite.to_subtype
Set.biInter_range
Set.sInter_eq_iInter
Subtype.forall'
Set.subset_def
TopologicalSpace.isTopologicalBasis_of_subbasis
topology_eq
isTopologicalBasis_insert_univ_subbasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instInsert
Set.univ
setOf
Compl.compl
Set.instCompl
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
TopologicalSpace.isTopologicalBasis_of_subbasis_of_inter
topology_eq
Topology.lower.eq_1
Set.compl_Ici
Set.Iio_inter_Iio
isTopologicalSpace_basis 📖mathematicalIsOpen
Set.univ
Compl.compl
Set
Set.instCompl
Set.Ici
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Set.compl_Ici
subset_trans
Set.instIsTransSubset
Set.singleton_subset_iff
Set.subset_insert
Set.sUnion_singleton
Set.sUnion_eq_univ_iff
Set.sUnion_eq_compl_sInter_compl
compl_inj_iff
le_antisymm
Set.sInter_image
Set.subset_insert_iff_of_notMem
Set.mem_Ici
sSup_le_iff
not_lt
Set.mem_Iio
TopologicalSpace.IsTopologicalBasis.open_eq_sUnion
isTopologicalBasis_insert_univ_subbasis
TopologicalSpace.IsTopologicalBasis.isOpen
isUpperSet_of_isClosed 📖mathematicalIsUpperSet
Preorder.toLE
isLowerSet_compl
isLowerSet_of_isOpen
IsClosed.isOpen_compl
t0Space 📖mathematicalT0Spacet0Space_iff_inseparable
Set.Ici_injective
closure_singleton
tendsto_nhds_iff_lt 📖mathematicalFilter.Tendsto
nhds
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
tendsto_nhds_iff_not_le 📖mathematicalFilter.Tendsto
nhds
Filter.Eventually
Preorder.toLE
topology_eq_lowerTopology
toContinuousInf 📖mathematicalContinuousInf
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
sInfHom.continuous
Topology.instIsLowerProd
topology_eq 📖mathematicalTopology.lowertopology_eq_lowerTopology
topology_eq_lowerTopology 📖mathematicalTopology.lower

Topology.IsUpper

Definitions

NameCategoryTheorems
upperBasis 📖CompOp
1 mathmath: isTopologicalBasis
withUpperHomeomorph 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton 📖mathematicalclosure
Set
Set.instSingletonSet
Set.Iic
Topology.IsLower.closure_singleton
OrderDual.instIsLower
continuous_iff_Iic 📖mathematicalContinuous
IsClosed
Set.preimage
Set.Iic
Topology.IsLower.continuous_iff_Ici
OrderDual.instIsLower
instClosedIicTopology 📖mathematicalClosedIicTopologyisOpen_compl_iff
isOpen_iff_generate_Iic_compl
isClosed_lowerClosure 📖mathematicalIsClosed
SetLike.coe
LowerSet
Preorder.toLE
LowerSet.instSetLike
lowerClosure
Topology.IsLower.isClosed_upperClosure
OrderDual.instIsLower
isLowerSet_of_isClosed 📖mathematicalIsLowerSet
Preorder.toLE
isUpperSet_compl
isUpperSet_of_isOpen
IsClosed.isOpen_compl
isOpen_iff_generate_Iic_compl 📖mathematicalIsOpen
TopologicalSpace.GenerateOpen
setOf
Set
Compl.compl
Set.instCompl
Set.Iic
topology_eq
isTopologicalBasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
upperBasis
Topology.IsLower.isTopologicalBasis
OrderDual.instIsLower
isTopologicalBasis_insert_univ_subbasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
Set
Set.instInsert
Set.univ
setOf
Compl.compl
Set.instCompl
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Topology.IsLower.isTopologicalBasis_insert_univ_subbasis
OrderDual.instIsLower
isTopologicalSpace_basis 📖mathematicalIsOpen
Set.univ
Compl.compl
Set
Set.instCompl
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Topology.IsLower.isTopologicalSpace_basis
OrderDual.instIsLower
isUpperSet_of_isOpen 📖mathematicalIsOpenIsUpperSet
Preorder.toLE
Topology.IsLower.isLowerSet_of_isOpen
OrderDual.instIsLower
t0Space 📖mathematicalT0SpaceTopology.IsLower.t0Space
OrderDual.instIsLower
tendsto_nhds_iff_lt 📖mathematicalFilter.Tendsto
nhds
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Topology.IsLower.tendsto_nhds_iff_lt
OrderDual.instIsLower
tendsto_nhds_iff_not_le 📖mathematicalFilter.Tendsto
nhds
Filter.Eventually
Preorder.toLE
Topology.IsLower.tendsto_nhds_iff_not_le
OrderDual.instIsLower
toContinuousInf 📖mathematicalContinuousSup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
sSupHom.continuous
Topology.instIsUpperProd
topology_eq 📖mathematicalTopology.uppertopology_eq_upperTopology
topology_eq_upperTopology 📖mathematicalTopology.upper

Topology.WithLower

Definitions

NameCategoryTheorems
instInhabited 📖CompOp
instLinearOrder 📖CompOp
instPartialOrder 📖CompOp
instPreorder 📖CompOp
5 mathmath: ofLower_le_ofLower, toLower_le_toLower, Topology.instIsLowerWithLower, toLower_lt_toLower, ofLower_lt_ofLower
instTopologicalSpace 📖CompOp
4 mathmath: isOpen_def, Topology.instIsLowerWithLower, isOpen_preimage_ofLower, continuous_toLower
ofLower 📖CompOp
8 mathmath: ofLower_symm, ofLower_le_ofLower, ofLower_inj, isOpen_preimage_ofLower, toLower_ofLower, toLower_symm, ofLower_lt_ofLower, ofLower_toLower
rec 📖CompOp
toDualHomeomorph 📖CompOp
toLower 📖CompOp
9 mathmath: ofLower_symm, toLower_inj, isOpen_def, toLower_le_toLower, toLower_ofLower, toLower_lt_toLower, continuous_toLower, toLower_symm, ofLower_toLower

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toLower 📖mathematicalContinuous
Topology.WithLower
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLower
continuous_generateFrom_iff
IsClosed.isOpen_compl
isClosed_Ici
instNonempty 📖mathematicalTopology.WithLower
isOpen_def 📖mathematicalIsOpen
Topology.WithLower
instTopologicalSpace
Topology.lower
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLower
isOpen_preimage_ofLower 📖mathematicalIsOpen
Topology.WithLower
instTopologicalSpace
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLower
Topology.lower
ofLower_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
ofLower
ofLower_le_ofLower 📖mathematicalPreorder.toLE
DFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
ofLower
instPreorder
ofLower_lt_ofLower 📖mathematicalPreorder.toLT
DFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
ofLower
instPreorder
ofLower_symm 📖mathematicalEquiv.symm
Topology.WithLower
ofLower
toLower
ofLower_toLower 📖mathematicalDFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
ofLower
toLower
toLower_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
toLower
toLower_le_toLower 📖mathematicalTopology.WithLower
Preorder.toLE
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLower
toLower_lt_toLower 📖mathematicalTopology.WithLower
Preorder.toLT
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLower
toLower_ofLower 📖mathematicalDFunLike.coe
Equiv
Topology.WithLower
EquivLike.toFunLike
Equiv.instEquivLike
toLower
ofLower
toLower_symm 📖mathematicalEquiv.symm
Topology.WithLower
toLower
ofLower

Topology.WithUpper

Definitions

NameCategoryTheorems
instInhabited 📖CompOp
instLinearOrder 📖CompOp
instPartialOrder 📖CompOp
instPreorder 📖CompOp
5 mathmath: ofUpper_lt_ofUpper, ofUpper_le_ofUpper, Topology.instIsUpperWithUpper, toUpper_lt_toUpper, toUpper_le_toUpper
instTopologicalSpace 📖CompOp
4 mathmath: continuous_toUpper, Topology.instIsUpperWithUpper, isOpen_preimage_ofUpper, isOpen_def
ofUpper 📖CompOp
8 mathmath: toUpper_ofUpper, ofUpper_lt_ofUpper, ofUpper_le_ofUpper, isOpen_preimage_ofUpper, ofUpper_symm, ofUpper_toUpper, ofUpper_inj, toUpper_symm
rec 📖CompOp
toUpper 📖CompOp
9 mathmath: continuous_toUpper, toUpper_ofUpper, ofUpper_symm, ofUpper_toUpper, toUpper_lt_toUpper, toUpper_inj, toUpper_symm, isOpen_def, toUpper_le_toUpper

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toUpper 📖mathematicalContinuous
Topology.WithUpper
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
continuous_generateFrom_iff
IsClosed.isOpen_compl
isClosed_Iic
instNonempty 📖mathematicalTopology.WithUpper
isOpen_def 📖mathematicalIsOpen
Topology.WithUpper
instTopologicalSpace
TopologicalSpace.IsOpen
Topology.upper
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
isOpen_preimage_ofUpper 📖mathematicalIsOpen
Topology.WithUpper
instTopologicalSpace
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofUpper
TopologicalSpace.IsOpen
Topology.upper
ofUpper_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
ofUpper
ofUpper_le_ofUpper 📖mathematicalPreorder.toLE
DFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
ofUpper
instPreorder
ofUpper_lt_ofUpper 📖mathematicalPreorder.toLT
DFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
ofUpper
instPreorder
ofUpper_symm 📖mathematicalEquiv.symm
Topology.WithUpper
ofUpper
toUpper
ofUpper_toUpper 📖mathematicalDFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
ofUpper
toUpper
toUpper_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
toUpper_le_toUpper 📖mathematicalTopology.WithUpper
Preorder.toLE
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
toUpper_lt_toUpper 📖mathematicalTopology.WithUpper
Preorder.toLT
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
toUpper_ofUpper 📖mathematicalDFunLike.coe
Equiv
Topology.WithUpper
EquivLike.toFunLike
Equiv.instEquivLike
toUpper
ofUpper
toUpper_symm 📖mathematicalEquiv.symm
Topology.WithUpper
toUpper
ofUpper

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUpperProp 📖mathematicalTopology.IsUpper
sierpinskiSpace
PartialOrder.toPreorder
Prop.partialOrder
Topology.upper.eq_1
sierpinskiSpace.eq_1
generateFrom_insert_empty
le_antisymm
Set.compl_Iic
Set.Ioi_False
Set.Ioi_True
Set.Iic_True
Set.compl_univ
Set.Iic_False
Prop.compl_singleton

sInfHom

Theorems

NameKindAssumesProvesValidatesDepends On
continuous 📖mathematicalContinuous
DFunLike.coe
sInfHom
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLike
Topology.IsLower.continuous_iff_Ici
Set.Subset.antisymm
sInf_le
le_trans
InfHomClass.toOrderHomClass
InfTopHomClass.toInfHomClass
sInfHomClass.toInfTopHomClass
instSInfHomClass
LE.le.trans
Eq.ge
sInfHomClass.map_sInf
OrderHomClass.mono
OrderHom.instOrderHomClass
isClosed_Ici
Topology.IsLower.instClosedIciTopology

sSupHom

Theorems

NameKindAssumesProvesValidatesDepends On
continuous 📖mathematicalContinuous
DFunLike.coe
sSupHom
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instFunLike
sInfHom.continuous
OrderDual.instIsLower

---

← Back to Index