Documentation Verification Report

MonotoneContinuity

📁 Source: Mathlib/Topology/Order/MonotoneContinuity.lean

Statistics

MetricCount
DefinitionstoHomeomorph
1
Theoremscontinuous_of_denseRange, continuous_of_surjective, coe_toHomeomorph, coe_toHomeomorph_symm, continuous, instHomeomorphClass, continuousAt_of_closure_image_mem_nhds, continuousAt_of_exists_between, continuousAt_of_image_mem_nhds, continuousWithinAt_left_of_closure_image_mem_nhdsWithin, continuousWithinAt_left_of_exists_between, continuousWithinAt_left_of_image_mem_nhdsWithin, continuousWithinAt_left_of_surjOn, continuousWithinAt_right_of_closure_image_mem_nhdsWithin, continuousWithinAt_right_of_exists_between, continuousWithinAt_right_of_image_mem_nhdsWithin, continuousWithinAt_right_of_surjOn, continuousAt_of_monotoneOn_of_closure_image_mem_nhds, continuousAt_of_monotoneOn_of_exists_between, continuousAt_of_monotoneOn_of_image_mem_nhds, continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin, continuousWithinAt_left_of_monotoneOn_of_exists_between, continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin, continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin, continuousWithinAt_right_of_monotoneOn_of_exists_between, continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin
26
Total27

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of_denseRange 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DenseRange
Continuouscontinuous_iff_continuousAt
continuousAt_of_monotoneOn_of_closure_image_mem_nhds
Filter.univ_mem
Set.image_univ
Dense.closure_eq
continuous_of_surjective 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Continuouscontinuous_of_denseRange
Function.Surjective.denseRange

OrderIso

Definitions

NameCategoryTheorems
toHomeomorph 📖CompOp
2 mathmath: coe_toHomeomorph, coe_toHomeomorph_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomeomorph 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
OrderIso
Preorder.toLE
instFunLikeOrderIso
coe_toHomeomorph_symm 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
OrderIso
Preorder.toLE
instFunLikeOrderIso
symm
continuous 📖mathematicalContinuous
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderTopology.topology_eq_generate_intervals
continuous_generateFrom_iff
preimage_Ioi
isOpen_lt'
preimage_Iio
isOpen_gt'
instHomeomorphClass 📖mathematicalHomeomorphClass
OrderIso
Preorder.toLE
instEquivLike
continuous

StrictMonoOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_of_closure_image_mem_nhds 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
closure
Set.image
ContinuousAtcontinuousAt_iff_continuous_left_right
continuousWithinAt_left_of_closure_image_mem_nhdsWithin
mem_nhdsWithin_of_mem_nhds
continuousWithinAt_right_of_closure_image_mem_nhdsWithin
continuousAt_of_exists_between 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.Ico
Set.Ioc
ContinuousAtcontinuousAt_iff_continuous_left_right
continuousWithinAt_left_of_exists_between
mem_nhdsWithin_of_mem_nhds
continuousWithinAt_right_of_exists_between
continuousAt_of_image_mem_nhds 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Set.image
ContinuousAtcontinuousAt_of_closure_image_mem_nhds
Filter.mem_of_superset
subset_closure
continuousWithinAt_left_of_closure_image_mem_nhdsWithin 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
closure
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_closure_image_mem_nhdsWithin
instOrderTopologyOrderDual
OrderDual.denselyOrdered
dual
continuousWithinAt_left_of_exists_between 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.instMembership
Set.Ico
ContinuousWithinAtcontinuousWithinAt_right_of_exists_between
instOrderTopologyOrderDual
dual
continuousWithinAt_left_of_image_mem_nhdsWithin 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_image_mem_nhdsWithin
instOrderTopologyOrderDual
OrderDual.denselyOrdered
dual
continuousWithinAt_left_of_surjOn 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.SurjOn
Set.Iio
ContinuousWithinAtcontinuousWithinAt_right_of_surjOn
instOrderTopologyOrderDual
dual
continuousWithinAt_right_of_closure_image_mem_nhdsWithin 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
closure
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
le_iff_le
continuousWithinAt_right_of_exists_between 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.instMembership
Set.Ioc
ContinuousWithinAtmem_of_mem_nhdsWithin
Set.self_mem_Ici
tendsto_order
Filter.mp_mem
self_mem_nhdsWithin
Filter.univ_mem'
LT.lt.trans_le
le_iff_le
Ico_mem_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
lt_iff_lt
continuousWithinAt_right_of_image_mem_nhdsWithin 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_closure_image_mem_nhdsWithin
Filter.mem_of_superset
subset_closure
continuousWithinAt_right_of_surjOn 📖mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.SurjOn
Set.Ioi
ContinuousWithinAtcontinuousWithinAt_right_of_exists_between
Eq.le

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_of_monotoneOn_of_closure_image_mem_nhds 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
closure
Set.image
ContinuousAtcontinuousAt_iff_continuous_left_right
continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin
mem_nhdsWithin_of_mem_nhds
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
continuousAt_of_monotoneOn_of_exists_between 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.Ioo
ContinuousAtcontinuousAt_iff_continuous_left_right
continuousWithinAt_left_of_monotoneOn_of_exists_between
mem_nhdsWithin_of_mem_nhds
continuousWithinAt_right_of_monotoneOn_of_exists_between
continuousAt_of_monotoneOn_of_image_mem_nhds 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhds
Set.image
ContinuousAtcontinuousAt_of_monotoneOn_of_closure_image_mem_nhds
Filter.mem_of_superset
subset_closure
continuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
closure
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
instOrderTopologyOrderDual
OrderDual.denselyOrdered
MonotoneOn.dual
continuousWithinAt_left_of_monotoneOn_of_exists_between 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.instMembership
Set.Ioo
ContinuousWithinAtcontinuousWithinAt_right_of_monotoneOn_of_exists_between
instOrderTopologyOrderDual
MonotoneOn.dual
continuousWithinAt_left_of_monotoneOn_of_image_mem_nhdsWithin 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Iic
Set.image
ContinuousWithinAtcontinuousWithinAt_left_of_monotoneOn_of_closure_image_mem_nhdsWithin
Filter.mem_of_superset
subset_closure
continuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
closure
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_monotoneOn_of_exists_between
mem_nhdsGE_iff_exists_mem_Ioc_Ico_subset
exists_between
mem_closure_iff
LT.lt.le
isOpen_Ioo
OrderTopology.to_orderClosedTopology
LT.lt.trans_le
continuousWithinAt_right_of_monotoneOn_of_exists_between 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.instMembership
Set.Ioo
ContinuousWithinAtmem_of_mem_nhdsWithin
Set.self_mem_Ici
tendsto_order
Filter.mp_mem
self_mem_nhdsWithin
Filter.univ_mem'
LT.lt.trans_le
not_le
LT.lt.not_ge
Ico_mem_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
LE.le.trans_lt
LT.lt.le
continuousWithinAt_right_of_monotoneOn_of_image_mem_nhdsWithin 📖mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Filter
Filter.instMembership
nhdsWithin
Set.Ici
Set.image
ContinuousWithinAtcontinuousWithinAt_right_of_monotoneOn_of_closure_image_mem_nhdsWithin
Filter.mem_of_superset
subset_closure

---

← Back to Index