Documentation Verification Report

MonotoneConvergence

📁 Source: Mathlib/Topology/Order/MonotoneConvergence.lean

Statistics

MetricCount
DefinitionsInfConvergenceClass, SupConvergenceClass
2
Theoremsge_of_tendsto, le_of_tendsto, tendsto_coe_atBot_isGLB, infConvergenceClass, supConvergenceClass, ge_of_tendsto, le_of_tendsto, infConvergenceClass, supConvergenceClass, infConvergenceClass, infConvergenceClass', supConvergenceClass, supConvergenceClass', supConvergenceClass, tendsto_coe_atTop_isLUB, iInf_eq_iInf_subseq_of_antitone, iInf_eq_iInf_subseq_of_monotone, iInf_eq_of_tendsto, iSup_eq_iSup_subseq_of_antitone, iSup_eq_iSup_subseq_of_monotone, iSup_eq_of_tendsto, instInfConvergenceClassProd, isGLB_of_tendsto_atBot, isGLB_of_tendsto_atTop, isLUB_of_tendsto_atBot, isLUB_of_tendsto_atTop, tendsto_atBot_ciInf, tendsto_atBot_ciSup, tendsto_atBot_iInf, tendsto_atBot_iSup, tendsto_atBot_isGLB, tendsto_atBot_isLUB, tendsto_atBot_of_antitone, tendsto_atBot_of_monotone, tendsto_atTop_ciInf, tendsto_atTop_ciSup, tendsto_atTop_iInf, tendsto_atTop_iSup, tendsto_atTop_isGLB, tendsto_atTop_isLUB, tendsto_atTop_of_antitone, tendsto_atTop_of_monotone, tendsto_iff_tendsto_subseq_of_antitone, tendsto_iff_tendsto_subseq_of_monotone, tendsto_of_antitone, tendsto_of_monotone
46
Total48

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
ge_of_tendsto 📖mathematicalAntitone
Filter.Tendsto
Filter.atBot
nhds
Preorder.toLEMonotone.le_of_tendsto
instOrderClosedTopologyOrderDual
dual_right
le_of_tendsto 📖mathematicalAntitone
Filter.Tendsto
Filter.atTop
nhds
Preorder.toLEMonotone.ge_of_tendsto
instOrderClosedTopologyOrderDual
dual_right

InfConvergenceClass

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_coe_atBot_isGLB 📖mathematicalIsGLB
Preorder.toLE
Filter.Tendsto
Set
Set.instMembership
Filter.atBot
Subtype.preorder
nhds

LinearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
infConvergenceClass 📖mathematicalInfConvergenceClass
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderDual.infConvergenceClass
supConvergenceClass
instOrderTopologyOrderDual
supConvergenceClass 📖mathematicalSupConvergenceClass
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
tendsto_order
IsLUB.exists_between
CanLift.prf
Subtype.canLift
Filter.Eventually.mono
Filter.eventually_ge_atTop
LT.lt.trans_le
Filter.Eventually.of_forall
LE.le.trans_lt

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
ge_of_tendsto 📖mathematicalMonotone
Filter.Tendsto
Filter.atTop
nhds
Preorder.toLEge_of_tendsto
instClosedIciTopology
Filter.atTop_neBot
Filter.Eventually.mono
Filter.eventually_ge_atTop
le_of_tendsto 📖mathematicalMonotone
Filter.Tendsto
Filter.atBot
nhds
Preorder.toLEge_of_tendsto
instOrderClosedTopologyOrderDual
OrderDual.isDirected_le
dual

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
infConvergenceClass 📖mathematicalInfConvergenceClass
OrderDual
instPreorder
instTopologicalSpace
SupConvergenceClass.tendsto_coe_atTop_isLUB
supConvergenceClass 📖mathematicalSupConvergenceClass
OrderDual
instPreorder
instTopologicalSpace
InfConvergenceClass.tendsto_coe_atBot_isGLB

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
infConvergenceClass 📖mathematicalInfConvergenceClasspreorder
topologicalSpace
OrderDual.infConvergenceClass
supConvergenceClass
OrderDual.supConvergenceClass
infConvergenceClass' 📖mathematicalInfConvergenceClass
preorder
topologicalSpace
infConvergenceClass
supConvergenceClass 📖mathematicalSupConvergenceClasspreorder
topologicalSpace
tendsto_pi_nhds
tendsto_atTop_isLUB
Monotone.restrict
Function.monotone_eval
supConvergenceClass' 📖mathematicalSupConvergenceClass
preorder
topologicalSpace
supConvergenceClass

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
supConvergenceClass 📖mathematicalSupConvergenceClass
instPreorder
instTopologicalSpaceProd
tendsto_atTop_isLUB
Monotone.restrict
monotone_fst
Set.range_restrict
isLUB_prod
monotone_snd
Filter.Tendsto.prodMk_nhds

SupConvergenceClass

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_coe_atTop_isLUB 📖mathematicalIsLUB
Preorder.toLE
Filter.Tendsto
Set
Set.instMembership
Filter.atTop
Subtype.preorder
nhds

(root)

Definitions

NameCategoryTheorems
InfConvergenceClass 📖CompData
4 mathmath: instInfConvergenceClassProd, LinearOrder.infConvergenceClass, OrderDual.infConvergenceClass, Pi.infConvergenceClass'
SupConvergenceClass 📖CompData
4 mathmath: LinearOrder.supConvergenceClass, OrderDual.supConvergenceClass, Pi.supConvergenceClass', Prod.supConvergenceClass

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_eq_iInf_subseq_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iSup_eq_iSup_subseq_of_antitone
Antitone.dual
iInf_eq_iInf_subseq_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iSup_eq_iSup_subseq_of_monotone
Monotone.dual
iInf_eq_of_tendsto 📖mathematicalAntitone
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Filter.Tendsto
Filter.atTop
nhds
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
tendsto_nhds_unique
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
tendsto_atTop_iInf
LinearOrder.infConvergenceClass
iSup_eq_iSup_subseq_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
iSup
ConditionallyCompletePartialOrderSup.toSupSet
le_antisymm
iSup_mono'
Filter.Eventually.exists
Filter.Tendsto.eventually
Filter.eventually_le_atBot
le_rfl
iSup_eq_iSup_subseq_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
iSup
ConditionallyCompletePartialOrderSup.toSupSet
le_antisymm
iSup_mono'
Filter.Eventually.exists
Filter.Tendsto.eventually
Filter.eventually_ge_atTop
le_rfl
iSup_eq_of_tendsto 📖mathematicalMonotone
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Filter.Tendsto
Filter.atTop
nhds
iSup
ConditionallyCompletePartialOrderSup.toSupSet
tendsto_nhds_unique
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
tendsto_atTop_iSup
LinearOrder.supConvergenceClass
instInfConvergenceClassProd 📖mathematicalInfConvergenceClass
Prod.instPreorder
instTopologicalSpaceProd
OrderDual.infConvergenceClass
Prod.supConvergenceClass
OrderDual.supConvergenceClass
isGLB_of_tendsto_atBot 📖mathematicalMonotone
Filter.Tendsto
Filter.atBot
nhds
IsGLB
Preorder.toLE
Set.range
isLUB_of_tendsto_atTop
instOrderClosedTopologyOrderDual
OrderDual.isDirected_le
OrderDual.instNonempty
Monotone.dual
isGLB_of_tendsto_atTop 📖mathematicalAntitone
Filter.Tendsto
Filter.atTop
nhds
IsGLB
Preorder.toLE
Set.range
isGLB_of_tendsto_atBot
OrderDual.isDirected_ge
OrderDual.instNonempty
Antitone.dual_left
isLUB_of_tendsto_atBot 📖mathematicalAntitone
Filter.Tendsto
Filter.atBot
nhds
IsLUB
Preorder.toLE
Set.range
isLUB_of_tendsto_atTop
OrderDual.isDirected_le
OrderDual.instNonempty
Antitone.dual_left
isLUB_of_tendsto_atTop 📖mathematicalMonotone
Filter.Tendsto
Filter.atTop
nhds
IsLUB
Preorder.toLE
Set.range
Monotone.ge_of_tendsto
le_of_tendsto'
instClosedIicTopology
Filter.atTop_neBot
Set.mem_range_self
tendsto_atBot_ciInf 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddBelow
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atBot
nhds
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
tendsto_atTop_ciSup
OrderDual.supConvergenceClass
Monotone.dual
BddBelow.dual
tendsto_atBot_ciSup 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddAbove
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atBot
nhds
iSup
ConditionallyCompletePartialOrderSup.toSupSet
tendsto_atTop_ciSup
Antitone.dual
BddAbove.dual
tendsto_atBot_iInf 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
nhds
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
tendsto_atBot_ciInf
OrderBot.bddBelow
tendsto_atBot_iSup 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
nhds
iSup
ConditionallyCompletePartialOrderSup.toSupSet
tendsto_atBot_ciSup
OrderTop.bddAbove
tendsto_atBot_isGLB 📖mathematicalMonotone
IsGLB
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atBot
nhds
tendsto_atTop_isLUB
OrderDual.supConvergenceClass
Monotone.dual
IsGLB.dual
tendsto_atBot_isLUB 📖mathematicalAntitone
IsLUB
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atBot
nhds
tendsto_atTop_isLUB
Antitone.dual_left
tendsto_atBot_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
Filter.atTop
nhds
tendsto_atTop_of_antitone
instOrderTopologyOrderDual
Antitone.dual
tendsto_atBot_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atBot
nhds
tendsto_atTop_of_monotone
instOrderTopologyOrderDual
Monotone.dual
tendsto_atTop_ciInf 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddBelow
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atTop
nhds
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
tendsto_atBot_ciSup
OrderDual.supConvergenceClass
Antitone.dual
BddBelow.dual
tendsto_atTop_ciSup 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
BddAbove
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atTop
nhds
iSup
ConditionallyCompletePartialOrderSup.toSupSet
isEmpty_or_nonempty
Filter.tendsto_of_isEmpty
tendsto_atTop_isLUB
isLUB_ciSup
tendsto_atTop_iInf 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
nhds
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
tendsto_atTop_ciInf
OrderBot.bddBelow
tendsto_atTop_iSup 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
nhds
iSup
ConditionallyCompletePartialOrderSup.toSupSet
tendsto_atTop_ciSup
OrderTop.bddAbove
tendsto_atTop_isGLB 📖mathematicalAntitone
IsGLB
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atTop
nhds
tendsto_atBot_isLUB
OrderDual.supConvergenceClass
Antitone.dual
IsGLB.dual
tendsto_atTop_isLUB 📖mathematicalMonotone
IsLUB
Preorder.toLE
Set.range
Filter.Tendsto
Filter.atTop
nhds
Monotone.tendsto_atTop_atTop
Monotone.rangeFactorization
Eq.ge
Filter.Tendsto.comp
SupConvergenceClass.tendsto_coe_atTop_isLUB
tendsto_atTop_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
Filter.atBot
nhds
tendsto_atTop_of_monotone
instOrderTopologyOrderDual
tendsto_atTop_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
nhds
tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
Filter.tendsto_atTop_atTop_of_monotone'
tendsto_iff_tendsto_subseq_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
SemilatticeSup.toPartialOrder
nhdstendsto_iff_tendsto_subseq_of_monotone
instOrderTopologyOrderDual
OrderDual.noMaxOrder
tendsto_iff_tendsto_subseq_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
SemilatticeSup.toPartialOrder
nhdsFilter.Tendsto.comp
tendsto_atTop_of_monotone
not_tendsto_atTop_of_tendsto_nhds
instNoTopOrderOfNoMaxOrder
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
tendsto_nhds_unique
OrderClosedTopology.to_t2Space
tendsto_of_antitone 📖mathematicalAntitone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
Filter.atBot
nhds
tendsto_atTop_of_antitone
tendsto_of_monotone 📖mathematicalMonotone
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Filter.Tendsto
Filter.atTop
nhds
tendsto_atTop_of_monotone

---

← Back to Index