Documentation Verification Report

Priestley

📁 Source: Mathlib/Topology/Order/Priestley.lean

Statistics

MetricCount
DefinitionsPriestleySpace
1
Theoremspriestley, toTotallySeparatedSpace, exists_isClopen_lower_of_not_le, exists_isClopen_upper_of_not_le, exists_isClopen_upper_or_lower_of_ne
5
Total6

PriestleySpace

Theorems

NameKindAssumesProvesValidatesDepends On
priestley 📖mathematicalPreorder.toLEIsClopen
IsUpperSet
Set
Set.instMembership
toTotallySeparatedSpace 📖mathematicalTotallySeparatedSpaceexists_isClopen_upper_or_lower_of_ne
IsClopen.isOpen
IsClopen.compl
subset_rfl
Set.instReflSubset
Set.union_compl_self
disjoint_compl_right

(root)

Definitions

NameCategoryTheorems
PriestleySpace 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isClopen_lower_of_not_le 📖mathematicalPreorder.toLEIsClopen
IsLowerSet
Set
Set.instMembership
exists_isClopen_upper_of_not_le
IsClopen.compl
IsUpperSet.compl
exists_isClopen_upper_of_not_le 📖mathematicalPreorder.toLEIsClopen
IsUpperSet
Set
Set.instMembership
PriestleySpace.priestley
exists_isClopen_upper_or_lower_of_ne 📖mathematicalIsClopen
IsUpperSet
Preorder.toLE
PartialOrder.toPreorder
IsLowerSet
Set
Set.instMembership
Ne.not_le_or_not_ge
exists_isClopen_upper_of_not_le
exists_isClopen_lower_of_not_le

---

← Back to Index