ScottTopology
📁 Source: Mathlib/Topology/Order/ScottTopology.lean
Statistics
DirSupClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compl 📖 | mathematical | DirSupClosed | DirSupInaccCompl.complSetSet.instCompl | — | dirSupInacc_compl |
inter 📖 | mathematical | DirSupClosed | SetSet.instInter | — | HasSubset.Subset.transSet.instIsTransSubsetSet.inter_subset_leftSet.inter_subset_right |
of_compl 📖 | mathematical | DirSupClosedCompl.complSetSet.instCompl | DirSupInacc | — | dirSupClosed_compl |
DirSupInacc
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compl 📖 | mathematical | DirSupInacc | DirSupClosedCompl.complSetSet.instCompl | — | dirSupClosed_compl |
dirSupInaccOn 📖 | mathematical | DirSupInacc | DirSupInaccOn | — | — |
of_compl 📖 | mathematical | DirSupInaccCompl.complSetSet.instCompl | DirSupClosed | — | dirSupInacc_compl |
union 📖 | mathematical | DirSupInacc | SetSet.instUnion | — | dirSupClosed_complSet.compl_unionDirSupClosed.intercompl |
DirSupInaccOn
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mono 📖 | — | SetSet.instHasSubsetDirSupInaccOn | — | — | — |
IsLowerSet
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
dirSupInacc 📖 | mathematical | IsLowerSetPreorder.toLE | DirSupInacc | — | DirSupClosed.of_complIsUpperSet.dirSupClosedcompl |
IsUpperSet
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
dirSupClosed 📖 | mathematical | IsUpperSetPreorder.toLE | DirSupClosed | — | — |
Topology
Definitions
Theorems
Topology.IsLower
Theorems
Topology.IsScott
Definitions
| Name | Category | Theorems |
|---|---|---|
withScottHomeomorph 📖 | CompOp | — |
Theorems
Topology.IsScottHausdorff
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
dirSupClosed_of_isClosed 📖 | mathematical | — | DirSupClosed | — | DirSupInacc.of_compldirSupInaccOn_univdirSupInaccOn_of_isOpenIsClosed.isOpen_compl |
dirSupInaccOn_of_isOpen 📖 | mathematical | IsOpen | DirSupInaccOn | — | isOpen_iffle_rfl |
isClosed_of_isUpperSet 📖 | mathematical | IsUpperSetPreorder.toLE | IsClosed | — | isOpen_compl_iffisOpen_of_isLowerSetIsUpperSet.compl |
isOpen_iff 📖 | mathematical | — | IsOpenSetSet.instMembershipSet.instHasSubsetSet.instInterSet.Ici | — | topology_eq_scottHausdorff |
isOpen_of_isLowerSet 📖 | mathematical | IsLowerSetPreorder.toLE | IsOpen | — | isOpen_iffmem_upperBounds |
topology_eq 📖 | mathematical | — | Topology.scottHausdorff | — | topology_eq_scottHausdorff |
topology_eq_scottHausdorff 📖 | mathematical | — | Topology.scottHausdorff | — | — |
Topology.WithScott
Definitions
| Name | Category | Theorems |
|---|---|---|
instInhabited 📖 | CompOp | — |
instPreorder 📖 | CompOp | |
instTopologicalSpace 📖 | CompOp | |
ofScott 📖 | CompOp | |
rec 📖 | CompOp | — |
toScott 📖 | CompOp |
Theorems
(root)
Definitions
Theorems
---