Documentation Verification Report

ScottTopology

📁 Source: Mathlib/Topology/Order/ScottTopology.lean

Statistics

MetricCount
DefinitionsDirSupClosed, DirSupInacc, DirSupInaccOn, IsScott, withScottHomeomorph, IsScottHausdorff, WithScott, instInhabited, instPreorder, instTopologicalSpace, ofScott, rec, toScott, scott, scottHausdorff
15
Theoremscompl, inter, of_compl, compl, dirSupInaccOn, of_compl, union, mono, dirSupInacc, dirSupClosed, scottHausdorff_le, closure_singleton, dirSupClosed_of_isClosed, instClosedIicTopologyOfUnivSet, instT0Space, instUnivSetOfIsUpper, isClosed_iff_isLowerSet_and_dirSupClosed, isLowerSet_of_isClosed, isOpen_iff_Iic_compl_or_univ, isOpen_iff_isUpperSet_and_dirSupInaccOn, isOpen_iff_isUpperSet_and_scottHausdorff_open, isOpen_iff_scottContinuous_mem, isUpperSet_of_isOpen, lowerClosure_subset_closure, monotone_of_continuous, scottContinuousOn_iff_continuous, scottHausdorff_le, scott_eq_upper_of_completeLinearOrder, topology_eq, topology_eq_scott, dirSupClosed_of_isClosed, dirSupInaccOn_of_isOpen, isClosed_of_isUpperSet, isOpen_iff, isOpen_of_isLowerSet, topology_eq, topology_eq_scottHausdorff, instIsScottUnivSet, instNonempty, isOpen_iff_isUpperSet_and_scottHausdorff_open', ofScott_inj, ofScott_symm_eq, ofScott_toScott, toScott_inj, toScott_ofScott, toScott_symm_eq, instIsScottHausdorff, scottHausdorff_le_lower, scottHausdorff_le_scott, upperSet_le_scott, dirSupClosed_Iic, dirSupClosed_compl, dirSupClosed_iff_forall_sSup, dirSupInaccOn_univ, dirSupInacc_compl, dirSupInacc_iff_forall_sSup
56
Total71

DirSupClosed

Theorems

NameKindAssumesProvesValidatesDepends On
compl 📖mathematicalDirSupClosedDirSupInacc
Compl.compl
Set
Set.instCompl
dirSupInacc_compl
inter 📖mathematicalDirSupClosedSet
Set.instInter
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Set.inter_subset_right
of_compl 📖mathematicalDirSupClosed
Compl.compl
Set
Set.instCompl
DirSupInaccdirSupClosed_compl

DirSupInacc

Theorems

NameKindAssumesProvesValidatesDepends On
compl 📖mathematicalDirSupInaccDirSupClosed
Compl.compl
Set
Set.instCompl
dirSupClosed_compl
dirSupInaccOn 📖mathematicalDirSupInaccDirSupInaccOn
of_compl 📖mathematicalDirSupInacc
Compl.compl
Set
Set.instCompl
DirSupCloseddirSupInacc_compl
union 📖mathematicalDirSupInaccSet
Set.instUnion
dirSupClosed_compl
Set.compl_union
DirSupClosed.inter
compl

DirSupInaccOn

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖Set
Set.instHasSubset
DirSupInaccOn

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
dirSupInacc 📖mathematicalIsLowerSet
Preorder.toLE
DirSupInaccDirSupClosed.of_compl
IsUpperSet.dirSupClosed
compl

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
dirSupClosed 📖mathematicalIsUpperSet
Preorder.toLE
DirSupClosed

Topology

Definitions

NameCategoryTheorems
IsScott 📖CompData
2 mathmath: IsScott.instUnivSetOfIsUpper, WithScott.instIsScottUnivSet
IsScottHausdorff 📖CompData
1 mathmath: instIsScottHausdorff
WithScott 📖CompOp
10 mathmath: WithScott.instNonempty, WithScott.toScott_ofScott, WithScott.ofScott_inj, WithScott.toScott_symm_eq, WithScott.isOpen_iff_isUpperSet_and_scottHausdorff_open', WithScott.toScott_inj, WithScott.ofScott_symm_eq, WithScott.ofScott_toScott, WithScott.instIsScottUnivSet, lawsonOpen_iff_scottOpen_of_isUpperSet
scott 📖CompOp
6 mathmath: lawson_le_scott, IsScott.topology_eq, upperSet_le_scott, scottHausdorff_le_scott, IsScott.topology_eq_scott, IsScott.scott_eq_upper_of_completeLinearOrder
scottHausdorff 📖CompOp
11 mathmath: scottHausdorff_le_isLawson, WithScott.isOpen_iff_isUpperSet_and_scottHausdorff_open', scottHausdorff_le_lawson, IsScottHausdorff.topology_eq_scottHausdorff, IsScott.scottHausdorff_le, scottHausdorff_le_scott, scottHausdorff_le_lower, instIsScottHausdorff, IsScottHausdorff.topology_eq, IsLower.scottHausdorff_le, IsScott.isOpen_iff_isUpperSet_and_scottHausdorff_open

Theorems

NameKindAssumesProvesValidatesDepends On
instIsScottHausdorff 📖mathematicalIsScottHausdorff
scottHausdorff
scottHausdorff_le_lower 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
scottHausdorff
Set.univ
Set
lower
IsScottHausdorff.isOpen_of_isLowerSet
instIsScottHausdorff
IsLower.isLowerSet_of_isOpen
instIsLowerWithLower
scottHausdorff_le_scott 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
scottHausdorff
Set.univ
Set
scott
le_sup_right
upperSet_le_scott 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
upperSet
scott
Set.univ
Set
le_sup_left

Topology.IsLower

Theorems

NameKindAssumesProvesValidatesDepends On
scottHausdorff_le 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Topology.scottHausdorff
Set.univ
Set
Topology.IsScottHausdorff.isOpen_of_isLowerSet
Topology.instIsScottHausdorff
isLowerSet_of_isOpen

Topology.IsScott

Definitions

NameCategoryTheorems
withScottHomeomorph 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton 📖mathematicalclosure
Set
Set.instSingletonSet
Set.Iic
le_antisymm
closure_minimal
Set.singleton_subset_iff
Set.mem_Iic
le_refl
isClosed_Iic
instClosedIicTopologyOfUnivSet
LowerSet.coe_Iic
lowerClosure_singleton
lowerClosure_subset_closure
dirSupClosed_of_isClosed 📖mathematicalDirSupClosedisClosed_iff_isLowerSet_and_dirSupClosed
instClosedIicTopologyOfUnivSet 📖mathematicalClosedIicTopologyisClosed_iff_isLowerSet_and_dirSupClosed
isLowerSet_Iic
dirSupClosed_Iic
instT0Space 📖mathematicalT0Spacet0Space_iff_inseparable
Set.Iic_injective
closure_singleton
instUnivSetOfIsUpper 📖mathematicalTopology.IsScott
Set.univ
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
scott_eq_upper_of_completeLinearOrder
Topology.IsUpper.topology_eq
isClosed_iff_isLowerSet_and_dirSupClosed 📖mathematicalIsClosed
IsLowerSet
Preorder.toLE
DirSupClosed
isOpen_compl_iff
isOpen_iff_isUpperSet_and_dirSupInaccOn
isUpperSet_compl
dirSupInaccOn_univ
dirSupInacc_compl
isLowerSet_of_isClosed 📖mathematicalIsLowerSet
Preorder.toLE
isClosed_iff_isLowerSet_and_dirSupClosed
isOpen_iff_Iic_compl_or_univ 📖mathematicalIsOpen
Set.univ
Compl.compl
Set
Set.instCompl
Set.Iic
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Set.eq_empty_or_nonempty
Set.compl_empty_iff
compl_eq_comm
le_antisymm_iff
le_sSup
IsLowerSet.Iic_subset
isLowerSet_of_isClosed
IsOpen.isClosed_compl
dirSupClosed_iff_forall_sSup
dirSupClosed_of_isClosed
IsChain.directedOn
instReflLe
isChain_of_trichotomous
instTrichotomousLe
le_rfl
isOpen_univ
IsClosed.isOpen_compl
isClosed_Iic
instClosedIicTopologyOfUnivSet
isOpen_iff_isUpperSet_and_dirSupInaccOn 📖mathematicalIsOpen
IsUpperSet
Preorder.toLE
DirSupInaccOn
isOpen_iff_isUpperSet_and_scottHausdorff_open
Topology.IsScottHausdorff.dirSupInaccOn_of_isOpen
Topology.instIsScottHausdorff
Set.Subset.trans
Set.inter_subset_left
IsUpperSet.Ici_subset
isOpen_iff_isUpperSet_and_scottHausdorff_open 📖mathematicalIsOpen
IsUpperSet
Preorder.toLE
Topology.scottHausdorff
topology_eq
isOpen_iff_scottContinuous_mem 📖mathematicalIsOpen
ScottContinuous
PartialOrder.toPreorder
Prop.partialOrder
Set
Set.instMembership
scottContinuousOn_univ
scottContinuousOn_iff_continuous
instUnivSetOfIsUpper
instIsUpperProp
isOpen_iff_continuous_mem
isUpperSet_of_isOpen 📖mathematicalIsOpenIsUpperSet
Preorder.toLE
isOpen_iff_isUpperSet_and_scottHausdorff_open
lowerClosure_subset_closure 📖mathematicalSet
Set.instHasSubset
SetLike.coe
LowerSet
Preorder.toLE
LowerSet.instSetLike
lowerClosure
closure
Topology.IsUpperSet.closure_eq_lowerClosure
Topology.instIsUpperSet
topology_eq
closure.mono
Topology.upperSet_le_scott
monotone_of_continuous 📖mathematicalContinuousMonotoneisUpperSet_of_isOpen
IsOpen.preimage
isOpen_compl_iff
isClosed_Iic
instClosedIicTopologyOfUnivSet
scottContinuousOn_iff_continuous 📖mathematicalSet
Set.instMembership
Set.instInsert
Set.instSingletonSet
ScottContinuousOn
Continuous
continuous_def
isOpen_iff_isUpperSet_and_dirSupInaccOn
IsUpperSet.preimage
isUpperSet_of_isOpen
ScottContinuousOn.monotone
Set.image_inter_nonempty_iff
Set.Nonempty.image
directedOn_image
DirectedOn.mono
Monotone.mem_upperBounds_image
monotone_of_continuous
IsOpen.preimage
IsClosed.isOpen_compl
isClosed_Iic
instClosedIicTopologyOfUnivSet
scottHausdorff_le 📖mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Topology.scottHausdorff
Set.univ
Set
topology_eq
Topology.scott.eq_1
le_sup_right
scott_eq_upper_of_completeLinearOrder 📖mathematicalTopology.scott
Set.univ
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Topology.upper
TopologicalSpace.ext
Topology.IsUpper.isTopologicalSpace_basis
isOpen_iff_Iic_compl_or_univ
topology_eq 📖mathematicalTopology.scotttopology_eq_scott
topology_eq_scott 📖mathematicalTopology.scott

Topology.IsScottHausdorff

Theorems

NameKindAssumesProvesValidatesDepends On
dirSupClosed_of_isClosed 📖mathematicalDirSupClosedDirSupInacc.of_compl
dirSupInaccOn_univ
dirSupInaccOn_of_isOpen
IsClosed.isOpen_compl
dirSupInaccOn_of_isOpen 📖mathematicalIsOpenDirSupInaccOnisOpen_iff
le_rfl
isClosed_of_isUpperSet 📖mathematicalIsUpperSet
Preorder.toLE
IsClosedisOpen_compl_iff
isOpen_of_isLowerSet
IsUpperSet.compl
isOpen_iff 📖mathematicalIsOpen
Set
Set.instMembership
Set.instHasSubset
Set.instInter
Set.Ici
topology_eq_scottHausdorff
isOpen_of_isLowerSet 📖mathematicalIsLowerSet
Preorder.toLE
IsOpenisOpen_iff
mem_upperBounds
topology_eq 📖mathematicalTopology.scottHausdorfftopology_eq_scottHausdorff
topology_eq_scottHausdorff 📖mathematicalTopology.scottHausdorff

Topology.WithScott

Definitions

NameCategoryTheorems
instInhabited 📖CompOp
instPreorder 📖CompOp
1 mathmath: instIsScottUnivSet
instTopologicalSpace 📖CompOp
3 mathmath: isOpen_iff_isUpperSet_and_scottHausdorff_open', instIsScottUnivSet, Topology.lawsonOpen_iff_scottOpen_of_isUpperSet
ofScott 📖CompOp
7 mathmath: toScott_ofScott, ofScott_inj, toScott_symm_eq, isOpen_iff_isUpperSet_and_scottHausdorff_open', ofScott_symm_eq, ofScott_toScott, Topology.lawsonOpen_iff_scottOpen_of_isUpperSet
rec 📖CompOp
toScott 📖CompOp
5 mathmath: toScott_ofScott, toScott_symm_eq, toScott_inj, ofScott_symm_eq, ofScott_toScott

Theorems

NameKindAssumesProvesValidatesDepends On
instIsScottUnivSet 📖mathematicalTopology.IsScott
Topology.WithScott
Set.univ
Set
instPreorder
instTopologicalSpace
instNonempty 📖mathematicalTopology.WithScott
isOpen_iff_isUpperSet_and_scottHausdorff_open' 📖mathematicalIsOpen
Topology.WithScott
instTopologicalSpace
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofScott
IsUpperSet
Preorder.toLE
TopologicalSpace.IsOpen
Topology.scottHausdorff
Set.univ
Set
ofScott_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithScott
EquivLike.toFunLike
Equiv.instEquivLike
ofScott
ofScott_symm_eq 📖mathematicalEquiv.symm
Topology.WithScott
ofScott
toScott
ofScott_toScott 📖mathematicalDFunLike.coe
Equiv
Topology.WithScott
EquivLike.toFunLike
Equiv.instEquivLike
ofScott
toScott
toScott_inj 📖mathematicalDFunLike.coe
Equiv
Topology.WithScott
EquivLike.toFunLike
Equiv.instEquivLike
toScott
toScott_ofScott 📖mathematicalDFunLike.coe
Equiv
Topology.WithScott
EquivLike.toFunLike
Equiv.instEquivLike
toScott
ofScott
toScott_symm_eq 📖mathematicalEquiv.symm
Topology.WithScott
toScott
ofScott

(root)

Definitions

NameCategoryTheorems
DirSupClosed 📖MathDef
11 mathmath: dirSupClosed_iff_forall_sSup, Topology.IsScott.isClosed_iff_isLowerSet_and_dirSupClosed, IsUpperSet.dirSupClosed, dirSupClosed_Iic, dirSupInacc_compl, DirSupInacc.of_compl, Topology.lawsonClosed_iff_dirSupClosed_of_isLowerSet, dirSupClosed_compl, Topology.IsScottHausdorff.dirSupClosed_of_isClosed, DirSupInacc.compl, Topology.IsScott.dirSupClosed_of_isClosed
DirSupInacc 📖MathDef
7 mathmath: DirSupClosed.of_compl, DirSupClosed.compl, dirSupInacc_compl, dirSupInaccOn_univ, dirSupClosed_compl, IsLowerSet.dirSupInacc, dirSupInacc_iff_forall_sSup
DirSupInaccOn 📖MathDef
4 mathmath: Topology.IsScottHausdorff.dirSupInaccOn_of_isOpen, dirSupInaccOn_univ, Topology.IsScott.isOpen_iff_isUpperSet_and_dirSupInaccOn, DirSupInacc.dirSupInaccOn

Theorems

NameKindAssumesProvesValidatesDepends On
dirSupClosed_Iic 📖mathematicalDirSupClosed
Set.Iic
isLUB_le_iff
dirSupClosed_compl 📖mathematicalDirSupClosed
Compl.compl
Set
Set.instCompl
DirSupInacc
dirSupInacc_compl
compl_compl
dirSupClosed_iff_forall_sSup 📖mathematicalDirSupClosed
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set
Set.instMembership
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
dirSupInaccOn_univ 📖mathematicalDirSupInaccOn
Set.univ
Set
DirSupInacc
dirSupInacc_compl 📖mathematicalDirSupInacc
Compl.compl
Set
Set.instCompl
DirSupClosed
dirSupInacc_iff_forall_sSup 📖mathematicalDirSupInacc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set.Nonempty
Set
Set.instInter

---

← Back to Index