Documentation Verification Report

T5

πŸ“ Source: Mathlib/Topology/Order/T5.lean

Statistics

MetricCount
Definitions0
TheoremscompletelyNormalSpace, t5Space, compl_ordConnectedSection_ordSeparatingSet_mem_nhds, compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE, compl_ordConnectedSection_ordSeparatingSet_mem_nhdsLE, ordConnectedComponent_mem_nhds, ordT5Nhd_mem_nhdsSet
7
Total7

OrderTopology

Theorems

NameKindAssumesProvesValidatesDepends On
completelyNormalSpace πŸ“–mathematicalβ€”CompletelyNormalSpaceβ€”Filter.disjoint_iff
Set.ordT5Nhd_mem_nhdsSet
Disjoint.symm
Set.disjoint_ordT5Nhd
t5Space πŸ“–mathematicalβ€”T5Spaceβ€”T2Space.t1Space
OrderClosedTopology.to_t2Space
to_orderClosedTopology
completelyNormalSpace

Set

Theorems

NameKindAssumesProvesValidatesDepends On
compl_ordConnectedSection_ordSeparatingSet_mem_nhds πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
instMembership
Filter
Filter.instMembership
nhds
Compl.compl
instCompl
ordConnectedSection
ordSeparatingSet
β€”nhdsLE_sup_nhdsGE
Filter.mem_sup
compl_ordConnectedSection_ordSeparatingSet_mem_nhdsLE
compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE
compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
instMembership
Filter
Filter.instMembership
nhdsWithin
Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Compl.compl
instCompl
ordConnectedSection
ordSeparatingSet
β€”mem_nhdsWithin_of_mem_nhds
mem_interior_iff_mem_nhds
interior_compl
disjoint_left
exists_Icc_mem_subset_of_mem_nhdsGE
Filter.mem_of_superset
subset_ordConnectedComponent
ordConnected_Icc
left_mem_Icc
Disjoint.mono_right
ordConnectedSection_subset
disjoint_left_ordSeparatingSet
LE.le.lt_of_ne
Filter.mp_mem
Ico_mem_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.univ_mem'
LT.lt.ne
eq_of_mem_ordConnectedSection_of_uIcc_subset
subset_inter
subset_iUnionβ‚‚_of_subset
OrdConnected.uIcc_subset
instOrdConnectedOrdConnectedComponent
LE.le.trans
LT.lt.le
mem_iUnionβ‚‚
ordConnected_uIcc
left_mem_uIcc
lt_of_not_ge
not_le
Icc_subset_uIcc
uIcc_of_ge
LT.lt.trans
compl_ordConnectedSection_ordSeparatingSet_mem_nhdsLE πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
instMembership
Filter
Filter.instMembership
nhdsWithin
Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Compl.compl
instCompl
ordConnectedSection
ordSeparatingSet
β€”dual_ordSeparatingSet
dual_ordConnectedSection
compl_ordConnectedSection_ordSeparatingSet_mem_nhdsGE
instOrderTopologyOrderDual
ordConnectedComponent_mem_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
ordConnectedComponent
β€”Filter.mem_of_superset
ordConnectedComponent_subset
exists_Icc_mem_subset_of_mem_nhds
subset_ordConnectedComponent
ordConnected_Icc
ordT5Nhd_mem_nhdsSet πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
Filter
Filter.instMembership
nhdsSet
ordT5Nhd
β€”bUnion_mem_nhdsSet
ordConnectedComponent_mem_nhds
Filter.inter_mem
mem_interior_iff_mem_nhds
interior_compl
disjoint_left
compl_ordConnectedSection_ordSeparatingSet_mem_nhds

---

← Back to Index