Documentation Verification Report

PartitionOfUnity

πŸ“ Source: Mathlib/Topology/PartitionOfUnity.lean

Statistics

MetricCount
DefinitionsBumpCovering, IsSubordinate, ind, instFunLikeContinuousMapReal, instInhabited, single, toFun, toPOUFun, toPartitionOfUnity, PartitionOfUnity, IsSubordinate, finsupport, fintsupport, instFunLikeContinuousMapReal, instInhabited, toFun
16
Theoremsmono, toPartitionOfUnity, coe_single, continuous_toPOUFun, eventuallyEq_one, eventuallyEq_one', exists_finset_toPOUFun_eventuallyEq, exists_finset_toPartitionOfUnity_eventuallyEq, exists_isSubordinate, exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space, exists_isSubordinate_of_locallyFinite, exists_isSubordinate_of_locallyFinite_of_prop, exists_isSubordinate_of_locallyFinite_of_prop_t2space, exists_isSubordinate_of_prop, ind_apply, le_one, le_one', locallyFinite, locallyFinite', locallyFinite_tsupport, nonneg, nonneg', point_finite, sum_toPOUFun_eq, sum_toPartitionOfUnity_eq, support_toPOUFun_subset, support_toPartitionOfUnity_subset, toFun_eq_coe, toPOUFun_eq_mul_prod, toPOUFun_zero_of_zero, toPartitionOfUnity_apply, toPartitionOfUnity_eq_mul_prod, toPartitionOfUnity_zero_of_zero, continuous_finsum_smul, coe_finsupport, continuous_finsum_smul, continuous_smul, eventually_finsupport_subset, eventually_fintsupport_subset, exists_finset_nhds, exists_finset_nhds', exists_finset_nhds_support_subset, exists_isSubordinate, exists_isSubordinate_of_locallyFinite, exists_isSubordinate_of_locallyFinite_t2space, exists_pos, finite_tsupport, finsupport_subset_fintsupport, le_one, locallyFinite, locallyFinite', locallyFinite_tsupport, mem_finsupport, mem_fintsupport_iff, nonneg, nonneg', sum_eq_one, sum_eq_one', sum_finsupport, sum_finsupport', sum_finsupport_smul_eq_finsum, sum_le_one, sum_le_one', sum_nonneg, exists_continuous_sum_one_of_isOpen_isCompact
65
Total81

BumpCovering

Definitions

NameCategoryTheorems
IsSubordinate πŸ“–MathDef
8 mathmath: exists_isSubordinate_of_prop, SmoothBumpCovering.IsSubordinate.toBumpCovering, exists_isSubordinate_of_locallyFinite_of_prop_t2space, exists_isSubordinate_of_locallyFinite_of_prop, exists_isSubordinate_of_locallyFinite, SmoothBumpCovering.isSubordinate_toBumpCovering, exists_isSubordinate, exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space
ind πŸ“–CompOp
2 mathmath: eventuallyEq_one, ind_apply
instFunLikeContinuousMapReal πŸ“–CompOp
22 mathmath: eventuallyEq_one, toPartitionOfUnity_apply, point_finite, support_toPOUFun_subset, le_one, exists_isSubordinate_of_prop, toPartitionOfUnity_eq_mul_prod, locallyFinite, exists_finset_toPartitionOfUnity_eventuallyEq, locallyFinite_tsupport, toFun_eq_coe, exists_isSubordinate_of_locallyFinite_of_prop_t2space, ind_apply, sum_toPartitionOfUnity_eq, exists_isSubordinate_of_locallyFinite_of_prop, nonneg, exists_finset_toPOUFun_eventuallyEq, toPOUFun_eq_mul_prod, exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space, sum_toPOUFun_eq, coe_single, support_toPartitionOfUnity_subset
instInhabited πŸ“–CompOpβ€”
single πŸ“–CompOp
1 mathmath: coe_single
toFun πŸ“–CompOp
5 mathmath: nonneg', toFun_eq_coe, eventuallyEq_one', locallyFinite', le_one'
toPOUFun πŸ“–CompOp
6 mathmath: support_toPOUFun_subset, continuous_toPOUFun, toPOUFun_zero_of_zero, exists_finset_toPOUFun_eventuallyEq, toPOUFun_eq_mul_prod, sum_toPOUFun_eq
toPartitionOfUnity πŸ“–CompOp
10 mathmath: toPartitionOfUnity_apply, toPartitionOfUnity_zero_of_zero, contMDiff_toPartitionOfUnity, toPartitionOfUnity_eq_mul_prod, toSmoothPartitionOfUnity_toPartitionOfUnity, exists_finset_toPartitionOfUnity_eventuallyEq, sum_toPartitionOfUnity_eq, IsSubordinate.toPartitionOfUnity, coe_toSmoothPartitionOfUnity, support_toPartitionOfUnity_subset

Theorems

NameKindAssumesProvesValidatesDepends On
coe_single πŸ“–mathematicalβ€”DFunLike.coe
BumpCovering
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instFunLikeContinuousMapReal
single
Pi.single
ContinuousMap.instZero
Real.instZero
ContinuousMap.instOne
Real.instOne
β€”β€”
continuous_toPOUFun πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toPOUFun
β€”Continuous.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
continuous_finprod_cond
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
Function.mulSupport_one_sub
locallyFinite
eventuallyEq_one πŸ“–mathematicalSet
Set.instMembership
Filter.EventuallyEq
Real
nhds
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
ind
Pi.instOne
Real.instOne
β€”eventuallyEq_one'
eventuallyEq_one' πŸ“–mathematicalSet
Set.univ
Set.instMembership
Filter.EventuallyEq
Real
nhds
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toFun
Pi.instOne
Real.instOne
β€”β€”
exists_finset_toPOUFun_eventuallyEq πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
nhds
toPOUFun
Pi.instMul
Real.instMul
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Finset.prod
ContinuousMap.instCommMonoidOfContinuousMul
Real.instCommMonoid
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Real.commRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
Finset.filter
WellOrderingRel
ContinuousMap.instSubOfContinuousSub
Real.instSub
IsTopologicalAddGroup.to_continuousSub
Real.instAddGroup
instIsTopologicalAddGroupReal
ContinuousMap.instOne
Real.instOne
β€”IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
locallyFinite
Filter.mp_mem
Filter.univ_mem'
ContinuousMap.coe_prod
Finset.prod_apply
toPOUFun_eq_mul_prod
Set.Finite.mem_toFinset
exists_finset_toPartitionOfUnity_eventuallyEq πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
nhds
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
Pi.instMul
Real.instMul
BumpCovering
instFunLikeContinuousMapReal
Finset.prod
ContinuousMap.instCommMonoidOfContinuousMul
Real.instCommMonoid
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Real.commRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
Finset.filter
WellOrderingRel
ContinuousMap.instSubOfContinuousSub
Real.instSub
IsTopologicalAddGroup.to_continuousSub
Real.instAddGroup
instIsTopologicalAddGroupReal
ContinuousMap.instOne
Real.instOne
β€”exists_finset_toPOUFun_eventuallyEq
exists_isSubordinate πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
Set.iUnion
IsSubordinateβ€”precise_refinement_set
exists_isSubordinate_of_locallyFinite
IsSubordinate.mono
exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space πŸ“–mathematicalIsCompact
IsOpen
LocallyFinite
Set
Set.instHasSubset
Set.iUnion
IsSubordinate
HasCompactSupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”exists_isSubordinate_of_locallyFinite_of_prop_t2space
exists_continuous_zero_one_of_isCompact'
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
T2Space.r1Space
Disjoint.symm
exists_isSubordinate_of_locallyFinite πŸ“–mathematicalIsOpen
LocallyFinite
Set
Set.instHasSubset
Set.iUnion
IsSubordinateβ€”exists_isSubordinate_of_locallyFinite_of_prop
exists_continuous_zero_one_of_isClosed
exists_isSubordinate_of_locallyFinite_of_prop πŸ“–mathematicalDFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.EqOn
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set
Set.instMembership
Set.Icc
Real.instPreorder
IsOpen
LocallyFinite
Set.instHasSubset
Set.iUnion
BumpCovering
instFunLikeContinuousMapReal
IsSubordinate
β€”exists_subset_iUnion_closure_subset
LocallyFinite.point_finite
Set.Subset.trans
subset_closure
LocallyFinite.subset
Function.support_subset_iff'
Set.mem_iUnion
Set.EqOn.eventuallyEq_of_mem
Set.EqOn.mono
IsOpen.mem_nhds
closure_mono
isClosed_compl_iff
isClosed_closure
Set.disjoint_right
exists_isSubordinate_of_locallyFinite_of_prop_t2space πŸ“–mathematicalDFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.EqOn
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set
Set.instMembership
Set.Icc
Real.instPreorder
IsCompact
IsOpen
LocallyFinite
Set.instHasSubset
Set.iUnion
BumpCovering
instFunLikeContinuousMapReal
IsSubordinate
HasCompactSupport
β€”exists_subset_iUnion_closure_subset_t2space
LocallyFinite.point_finite
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
LocallyFinite.subset
Function.support_subset_iff'
Set.Subset.trans
Set.mem_iUnion
Set.EqOn.eventuallyEq_of_mem
Set.EqOn.mono
IsOpen.mem_nhds
closure_mono
IsCompact.of_isClosed_subset
isClosed_closure
isClosed_compl_iff
Set.disjoint_right
exists_isSubordinate_of_prop πŸ“–mathematicalDFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.EqOn
Pi.instZero
Real.instZero
Pi.instOne
Real.instOne
Set
Set.instMembership
Set.Icc
Real.instPreorder
IsOpen
Set.instHasSubset
Set.iUnion
BumpCovering
instFunLikeContinuousMapReal
IsSubordinate
β€”precise_refinement_set
exists_isSubordinate_of_locallyFinite_of_prop
IsSubordinate.mono
ind_apply πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
ind
Real.instOne
β€”Filter.EventuallyEq.eq_of_nhds
eventuallyEq_one
le_one πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Real.instOne
β€”le_one'
le_one' πŸ“–mathematicalβ€”Pi.hasLe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Preorder.toLE
PartialOrder.toPreorder
ContinuousMap.partialOrder
Real.partialOrder
toFun
Pi.instOne
ContinuousMap.instOne
Real.instOne
β€”β€”
locallyFinite πŸ“–mathematicalβ€”LocallyFinite
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”locallyFinite'
locallyFinite' πŸ“–mathematicalβ€”LocallyFinite
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toFun
β€”β€”
locallyFinite_tsupport πŸ“–mathematicalβ€”LocallyFinite
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”LocallyFinite.closure
locallyFinite
nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”nonneg'
nonneg' πŸ“–mathematicalβ€”Pi.hasLe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Preorder.toLE
PartialOrder.toPreorder
ContinuousMap.partialOrder
Real.partialOrder
Pi.instZero
ContinuousMap.instZero
Real.instZero
toFun
β€”β€”
point_finite πŸ“–mathematicalβ€”Set.Finite
setOf
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Real.instZero
β€”LocallyFinite.point_finite
locallyFinite
sum_toPOUFun_eq πŸ“–mathematicalβ€”finsum
Real
Real.instAddCommMonoid
toPOUFun
Real.instSub
Real.instOne
finprod
Real.instCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”point_finite
Set.Finite.coe_toFinset
support_toPOUFun_subset
Function.mulSupport_one_sub
finsum_eq_sum_of_support_subset
finprod_eq_prod_of_mulSupport_subset
instIsStrictTotalOrderOfIsWellOrder
WellOrderingRel.isWellOrder
Finset.prod_one_sub_ordered
sub_sub_cancel
Finset.sum_congr
Finset.prod_congr
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
toPOUFun_eq_mul_prod
Set.Finite.mem_toFinset
sum_toPartitionOfUnity_eq πŸ“–mathematicalβ€”finsum
Real
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
Real.instSub
Real.instOne
finprod
Real.instCommMonoid
BumpCovering
instFunLikeContinuousMapReal
β€”sum_toPOUFun_eq
support_toPOUFun_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
Real
Real.instZero
toPOUFun
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
β€”toPOUFun_zero_of_zero
support_toPartitionOfUnity_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
BumpCovering
instFunLikeContinuousMapReal
β€”support_toPOUFun_subset
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
BumpCovering
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instFunLikeContinuousMapReal
β€”β€”
toPOUFun_eq_mul_prod πŸ“–mathematicalFinset
Finset.instMembership
toPOUFun
Real
Real.instMul
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Finset.prod
Real.instCommMonoid
Finset.filter
WellOrderingRel
Real.instSub
Real.instOne
β€”finprod_cond_eq_prod_of_cond_iff
Finset.mem_filter
sub_eq_self
toPOUFun_zero_of_zero πŸ“–mathematicalDFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Real.instZero
toPOUFunβ€”toPOUFun.eq_1
MulZeroClass.zero_mul
toPartitionOfUnity_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
Real.instMul
BumpCovering
instFunLikeContinuousMapReal
finprod
Real.instCommMonoid
WellOrderingRel
Real.instSub
Real.instOne
β€”β€”
toPartitionOfUnity_eq_mul_prod πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
Real.instMul
BumpCovering
instFunLikeContinuousMapReal
Finset.prod
Real.instCommMonoid
Finset.filter
WellOrderingRel
Real.instSub
Real.instOne
β€”toPOUFun_eq_mul_prod
toPartitionOfUnity_zero_of_zero πŸ“–mathematicalDFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
BumpCovering
instFunLikeContinuousMapReal
Real.instZero
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
toPartitionOfUnity
β€”toPOUFun_zero_of_zero

BumpCovering.IsSubordinate

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”BumpCovering.IsSubordinate
Set
Set.instHasSubset
β€”β€”Set.Subset.trans
toPartitionOfUnity πŸ“–mathematicalBumpCovering.IsSubordinatePartitionOfUnity.IsSubordinate
BumpCovering.toPartitionOfUnity
β€”Set.Subset.trans
closure_mono
BumpCovering.support_toPartitionOfUnity_subset

PartitionOfUnity

Definitions

NameCategoryTheorems
IsSubordinate πŸ“–MathDef
6 mathmath: exists_isSubordinate_of_locallyFinite_t2space, exists_isSubordinate, SmoothPartitionOfUnity.IsSubordinate.toPartitionOfUnity, exists_isSubordinate_of_locallyFinite, BumpCovering.IsSubordinate.toPartitionOfUnity, SmoothPartitionOfUnity.isSubordinate_toPartitionOfUnity
finsupport πŸ“–CompOp
6 mathmath: coe_finsupport, eventually_finsupport_subset, sum_finsupport_smul_eq_finsum, finsupport_subset_fintsupport, sum_finsupport, mem_finsupport
fintsupport πŸ“–CompOp
4 mathmath: eventually_fintsupport_subset, eventually_finsupport_subset, finsupport_subset_fintsupport, mem_fintsupport_iff
instFunLikeContinuousMapReal πŸ“–CompOp
32 mathmath: BumpCovering.toPartitionOfUnity_apply, BumpCovering.toPartitionOfUnity_zero_of_zero, locallyFinite, exists_finset_nhds, IsSubordinate.continuous_finsum_smul, BumpCovering.contMDiff_toPartitionOfUnity, coe_finsupport, exists_finset_nhds_support_subset, sum_eq_one, BumpCovering.toPartitionOfUnity_eq_mul_prod, exists_isSubordinate_of_locallyFinite_t2space, finsum_smul_mem_convex, nonneg, sum_finsupport_smul_eq_finsum, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, locallyFinite_tsupport, continuous_finsum_smul, BumpCovering.sum_toPartitionOfUnity_eq, sum_le_one, le_one, sum_nonneg, BumpCovering.coe_toSmoothPartitionOfUnity, finite_tsupport, mem_fintsupport_iff, SmoothPartitionOfUnity.toPartitionOfUnity_toFun, exists_finset_nhds', exists_pos, continuous_smul, sum_finsupport', sum_finsupport, BumpCovering.support_toPartitionOfUnity_subset, mem_finsupport
instInhabited πŸ“–CompOpβ€”
toFun πŸ“–CompOp
4 mathmath: nonneg', sum_eq_one', sum_le_one', locallyFinite'

Theorems

NameKindAssumesProvesValidatesDepends On
coe_finsupport πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
finsupport
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”Set.ext
Finset.mem_coe
mem_finsupport
continuous_finsum_smul πŸ“–mathematicalContinuousAtContinuous
finsum
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”continuous_finsum
continuous_smul
LocallyFinite.subset
locallyFinite
Function.support_smul_subset_left
continuous_smul πŸ“–mathematicalContinuousAtContinuous
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”continuous_of_tsupport
ContinuousAt.smul
ContinuousMap.continuousAt
tsupport_smul_subset_left
eventually_finsupport_subset πŸ“–mathematicalβ€”Filter.Eventually
Finset
Finset.instHasSubset
finsupport
fintsupport
nhds
β€”Filter.Eventually.mono
eventually_fintsupport_subset
HasSubset.Subset.trans
Finset.instIsTransSubset
finsupport_subset_fintsupport
eventually_fintsupport_subset πŸ“–mathematicalβ€”Filter.Eventually
Finset
Finset.instHasSubset
fintsupport
nhds
β€”Filter.Eventually.mono
LocallyFinite.eventually_subset
LocallyFinite.closure
locallyFinite
isClosed_closure
mem_fintsupport_iff
exists_finset_nhds πŸ“–mathematicalβ€”Filter.Eventually
Real
Finset.sum
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
Set.univ
instFunLikeContinuousMapReal
Real.instOne
Set
Set.instHasSubset
Function.support
Real.instZero
SetLike.coe
Finset
Finset.instSetLike
nhds
β€”exists_finset_nhds'
Filter.eventually_and
nhdsWithin_univ
exists_finset_nhds' πŸ“–mathematicalβ€”Filter.Eventually
Real
Finset.sum
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
nhdsWithin
Set
Set.instHasSubset
Function.support
Real.instZero
SetLike.coe
Finset
Finset.instSetLike
nhds
β€”LocallyFinite.exists_finset_support
locallyFinite
eventually_nhdsWithin_iff
Filter.Eventually.mono
finsum_eq_sum_of_support_subset
sum_eq_one
exists_finset_nhds_support_subset πŸ“–mathematicalIsSubordinate
IsOpen
Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
Set.iInter
Finset
Finset.instMembership
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
SetLike.coe
Finset.instSetLike
β€”LocallyFinite.exists_finset_nhds_support_subset
locallyFinite
exists_isSubordinate πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
Set.iUnion
IsSubordinateβ€”BumpCovering.exists_isSubordinate
BumpCovering.IsSubordinate.toPartitionOfUnity
exists_isSubordinate_of_locallyFinite πŸ“–mathematicalIsOpen
LocallyFinite
Set
Set.instHasSubset
Set.iUnion
IsSubordinateβ€”BumpCovering.exists_isSubordinate_of_locallyFinite
BumpCovering.IsSubordinate.toPartitionOfUnity
exists_isSubordinate_of_locallyFinite_t2space πŸ“–mathematicalIsCompact
IsOpen
LocallyFinite
Set
Set.instHasSubset
Set.iUnion
IsSubordinate
HasCompactSupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”BumpCovering.exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space
BumpCovering.IsSubordinate.toPartitionOfUnity
IsCompact.of_isClosed_subset
isClosed_closure
closure_mono
BumpCovering.support_toPartitionOfUnity_subset
exists_pos πŸ“–mathematicalSet
Set.instMembership
Real
Real.instLT
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”sum_eq_one
Mathlib.Tactic.Contrapose.contrapose₁
LE.le.antisymm
nonneg
finsum_zero
zero_ne_one
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
finite_tsupport πŸ“–mathematicalβ€”Set.Finite
setOf
Set
Set.instMembership
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”locallyFinite
Set.Finite.subset
Set.inter_comm
mem_closure_iff_nhds
finsupport_subset_fintsupport πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
finsupport
fintsupport
β€”mem_fintsupport_iff
subset_closure
mem_finsupport
le_one πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
β€”LE.le.trans
single_le_finsum
Real.instIsOrderedAddMonoid
LocallyFinite.point_finite
locallyFinite
nonneg
sum_le_one
locallyFinite πŸ“–mathematicalβ€”LocallyFinite
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”locallyFinite'
locallyFinite' πŸ“–mathematicalβ€”LocallyFinite
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toFun
β€”β€”
locallyFinite_tsupport πŸ“–mathematicalβ€”LocallyFinite
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”LocallyFinite.closure
locallyFinite
mem_finsupport πŸ“–mathematicalβ€”Finset
Finset.instMembership
finsupport
Set
Set.instMembership
Function.support
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”Set.Finite.toFinset.congr_simp
mem_fintsupport_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
fintsupport
Set
Set.instMembership
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”Set.Finite.mem_toFinset
finite_tsupport
nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”nonneg'
nonneg' πŸ“–mathematicalβ€”Pi.hasLe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Preorder.toLE
PartialOrder.toPreorder
ContinuousMap.partialOrder
Real.partialOrder
Pi.instZero
ContinuousMap.instZero
Real.instZero
toFun
β€”β€”
sum_eq_one πŸ“–mathematicalSet
Set.instMembership
finsum
Real
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
β€”sum_eq_one'
sum_eq_one' πŸ“–mathematicalSet
Set.univ
Set.instMembership
finsum
Real
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toFun
Real.instOne
β€”β€”
sum_finsupport πŸ“–mathematicalSet
Set.instMembership
Finset.sum
Real
Real.instAddCommMonoid
finsupport
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
β€”sum_eq_one
finsum_eq_sum_of_support_subset
Eq.superset
Set.instReflSubset
coe_finsupport
sum_finsupport' πŸ“–mathematicalSet
Set.instMembership
Finset
Finset.instHasSubset
finsupport
Finset.sum
Real
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
β€”Finset.sum_sdiff
sum_finsupport
Finset.sum_congr
mem_finsupport
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.sum_const_zero
sum_finsupport_smul_eq_finsum πŸ“–mathematicalβ€”Finset.sum
finsupport
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
finsum
β€”finsum_eq_sum_of_support_subset
Pi.smul_apply'
coe_finsupport
Function.support_smul
Real.instIsDomain
DivisionSemiring.to_moduleIsTorsionFree
Set.inter_subset_left
sum_le_one πŸ“–mathematicalβ€”Real
Real.instLE
finsum
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
Real.instOne
β€”sum_le_one'
sum_le_one' πŸ“–mathematicalβ€”Real
Real.instLE
finsum
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toFun
Real.instOne
β€”β€”
sum_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
finsum
Real.instAddCommMonoid
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
instFunLikeContinuousMapReal
β€”finsum_nonneg
Real.instIsOrderedAddMonoid
nonneg

PartitionOfUnity.IsSubordinate

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_finsum_smul πŸ“–mathematicalIsOpen
PartitionOfUnity.IsSubordinate
ContinuousOn
Continuous
finsum
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
PartitionOfUnity
PartitionOfUnity.instFunLikeContinuousMapReal
β€”PartitionOfUnity.continuous_finsum_smul
ContinuousOn.continuousAt
IsOpen.mem_nhds

(root)

Definitions

NameCategoryTheorems
BumpCovering πŸ“–CompData
22 mathmath: BumpCovering.eventuallyEq_one, BumpCovering.toPartitionOfUnity_apply, BumpCovering.point_finite, BumpCovering.support_toPOUFun_subset, BumpCovering.le_one, BumpCovering.exists_isSubordinate_of_prop, BumpCovering.toPartitionOfUnity_eq_mul_prod, BumpCovering.locallyFinite, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, BumpCovering.locallyFinite_tsupport, BumpCovering.toFun_eq_coe, BumpCovering.exists_isSubordinate_of_locallyFinite_of_prop_t2space, BumpCovering.ind_apply, BumpCovering.sum_toPartitionOfUnity_eq, BumpCovering.exists_isSubordinate_of_locallyFinite_of_prop, BumpCovering.nonneg, BumpCovering.exists_finset_toPOUFun_eventuallyEq, BumpCovering.toPOUFun_eq_mul_prod, BumpCovering.exists_isSubordinate_hasCompactSupport_of_locallyFinite_t2space, BumpCovering.sum_toPOUFun_eq, BumpCovering.coe_single, BumpCovering.support_toPartitionOfUnity_subset
PartitionOfUnity πŸ“–CompData
32 mathmath: BumpCovering.toPartitionOfUnity_apply, BumpCovering.toPartitionOfUnity_zero_of_zero, PartitionOfUnity.locallyFinite, PartitionOfUnity.exists_finset_nhds, PartitionOfUnity.IsSubordinate.continuous_finsum_smul, BumpCovering.contMDiff_toPartitionOfUnity, PartitionOfUnity.coe_finsupport, PartitionOfUnity.exists_finset_nhds_support_subset, PartitionOfUnity.sum_eq_one, BumpCovering.toPartitionOfUnity_eq_mul_prod, PartitionOfUnity.exists_isSubordinate_of_locallyFinite_t2space, PartitionOfUnity.finsum_smul_mem_convex, PartitionOfUnity.nonneg, PartitionOfUnity.sum_finsupport_smul_eq_finsum, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, PartitionOfUnity.locallyFinite_tsupport, PartitionOfUnity.continuous_finsum_smul, BumpCovering.sum_toPartitionOfUnity_eq, PartitionOfUnity.sum_le_one, PartitionOfUnity.le_one, PartitionOfUnity.sum_nonneg, BumpCovering.coe_toSmoothPartitionOfUnity, PartitionOfUnity.finite_tsupport, PartitionOfUnity.mem_fintsupport_iff, SmoothPartitionOfUnity.toPartitionOfUnity_toFun, PartitionOfUnity.exists_finset_nhds', PartitionOfUnity.exists_pos, PartitionOfUnity.continuous_smul, PartitionOfUnity.sum_finsupport', PartitionOfUnity.sum_finsupport, BumpCovering.support_toPartitionOfUnity_subset, PartitionOfUnity.mem_finsupport

Theorems

NameKindAssumesProvesValidatesDepends On
exists_continuous_sum_one_of_isOpen_isCompact πŸ“–mathematicalIsOpen
IsCompact
Set
Set.instHasSubset
Set.iUnion
tsupport
Real
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Set.EqOn
Finset.sum
Pi.addCommMonoid
Real.instAddCommMonoid
Finset.univ
Fin.fintype
Pi.instOne
Real.instOne
Set.instMembership
Set.Icc
Real.instPreorder
HasCompactSupport
β€”PartitionOfUnity.exists_isSubordinate_of_locallyFinite_t2space
locallyFinite_of_finite
Finite.of_fintype
Finset.sum_apply
PartitionOfUnity.sum_eq_one'
Set.Finite.subset
Set.finite_univ
Set.subset_univ
Fintype.sum_subset
Set.Finite.toFinset_setOf
finsum_eq_sum
PartitionOfUnity.nonneg
PartitionOfUnity.le_one

---

← Back to Index