Documentation Verification Report

Path

πŸ“ Source: Mathlib/Topology/Path.lean

Statistics

MetricCount
Definitionsadd, cast, extend, id, instFunLike, instHasUncurryPath, instTopologicalSpace, inv, map, map', mul, neg, ofLine, pi, prod, refl, reparam, apply, toContinuousMap, trans, truncate, truncateOfLE
22
TheoremspathExtend, path_trans, pathExtend, pathExtend, add_apply, bijective_cast, cast_coe, cast_rfl_rfl, cast_symm, cast_trans, coe_mk', coe_mk_mk, coe_reparam, coe_toContinuousMap, continuous, continuousMapClass, continuous_extend, continuous_symm, continuous_trans, continuous_uncurry_extend_of_continuous_family, continuous_uncurry_iff, exists_congr, ext, ext_iff, extend_apply, extend_cast, extend_extends, extend_extends', extend_of_le_zero, extend_of_one_le, extend_one, extend_range, extend_symm, extend_symm_apply, extend_trans_of_half_le, extend_trans_of_le_half, extend_zero, id_apply, image_extend_of_subset, instContinuousEvalElemRealUnitInterval, inv_apply, map_coe, map_id, map_map, map_symm, map_trans, mul_apply, neg_apply, ofLine_extend, ofLine_mem, pi_coe, prod_coe, range_coe, range_reparam, refl_apply, refl_extend, refl_range, refl_reparam, refl_symm, refl_trans_refl, reparam_id, source, source', source_mem_range, symm_apply, symm_bijective, symm_cast, symm_continuous_family, symm_range, symm_symm, target, target', target_mem_range, trans_apply, trans_cast, trans_continuous_family, trans_pi_eq_pi_trans, trans_prod_eq_prod_trans, trans_range, trans_symm, truncate_const_continuous_family, truncate_continuous_family, truncate_one_one, truncate_range, truncate_self, truncate_zero_one, truncate_zero_zero
87
Total109

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
pathExtend πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
Path.instHasUncurryPath
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.extend
β€”IccExtend
instOrderTopologyReal
path_trans πŸ“–mathematicalContinuous
Path
Path.instTopologicalSpace
Path.transβ€”Path.continuous_uncurry_iff
Path.trans_continuous_family

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
pathExtend πŸ“–mathematicalContinuousAt
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
Path.instHasUncurryPath
Set.projIcc
Real.linearOrder
Real.instZero
Real.instOne
zero_le_one
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instZeroLEOneClass
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.extend
β€”zero_le_one
Real.instZeroLEOneClass
IccExtend
instOrderTopologyReal

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
pathExtend πŸ“–mathematicalFilter.Tendsto
Set.Elem
Real
unitInterval
Function.HasUncurry.uncurry
Path.instHasUncurryPath
SProd.sprod
Filter
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.linearOrder
Real.instZero
Real.instOne
Filter.instSProd
nhds
Filter.map
Set.projIcc
zero_le_one
Preorder.toLE
Real.instZeroLEOneClass
Function.hasUncurryInduction
Function.hasUncurryBase
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Path.extend
β€”zero_le_one
Real.instZeroLEOneClass
IccExtend

Path

Definitions

NameCategoryTheorems
add πŸ“–CompOp
2 mathmath: add_apply, segment_add_segment
cast πŸ“–CompOp
25 mathmath: FundamentalGroupoid.eqToHom_eq, bijective_cast, FundamentalGroupoid.conj_eqToHom_assoc, exists_congr, cast_rfl_rfl, Homotopic.pathCast, truncate_self, cast_coe, truncate_zero_zero, curveIntegralFun_cast, cast_trans, FundamentalGroup.mapOfEq_apply, symm_cast, curveIntegrable_cast_iff, truncate_zero_one, FundamentalGroupoid.conj_eqToHom, Homotopic.Quotient.mk_cast, curveIntegral_cast, cast_symm, trans_cast, subpath_zero_one, truncate_one_one, CurveIntegrable.cast, cast_segment, extend_cast
extend πŸ“–CompOp
35 mathmath: extend_extends, ofLine_extend, extend_symm_apply, truncate_self, continuous_extend, extend_trans_of_le_half, Continuous.pathExtend, extend_apply, ContinuousMap.Homotopy.pathExtend_evalAt, uniformContinuous_extend_left, truncate_zero_zero, extend_of_one_le, image_extend_of_subset, ContinuousAt.pathExtend, extend_range, curveIntegralFun_def', continuous_uncurry_extend_of_continuous_family, truncate_zero_one, extend_one, curveIntegral_eq_intervalIntegral_deriv, extend_symm, extend_zero, truncate_const_continuous_family, extend_extends', truncate_continuous_family, Filter.Tendsto.pathExtend, extend_of_le_zero, truncate_one_one, uniformContinuous_extend, extend_trans_of_half_le, refl_extend, curveIntegralFun_def, truncate_range, eqOn_extend_segment, extend_cast
id πŸ“–CompOp
1 mathmath: id_apply
instFunLike πŸ“–CompOp
66 mathmath: subpath_self, IsPathConnected.exists_path_through_family', continuousMapClass, extend_extends, GenLoop.fromLoop_apply, selfAdjoint.expUnitaryPathToOne_apply, range_subpath_of_ge, pi_coe, ext_iff, toHomotopyConst_apply, extend_apply, cast_coe, ofLine_mem, Homotopy.hcomp_apply, instContinuousEvalElemRealUnitInterval, Homotopy.eval_apply, IsPathConnected.exists_path_through_family, mul_apply, ContinuousMap.Homotopy.evalAt_apply, uniformContinuous, image_extend_of_subset, GenLoop.toLoop_apply, extend_range, isUniformEmbedding_coe, range_subpath, symm_apply, inv_apply, refl_apply, range_segment, prod_coe, Manifold.riemannianEDist_def, GenLoop.toLoop_apply_coe, range_reparam, continuous, source_mem_range, neg_apply, target_mem_range, PathConnectedSpace.exists_path_through_family, trans_apply, trans_range, symm_subpath, PathConnectedSpace.exists_path_through_family', coe_mk_mk, range_coe, add_apply, map_coe, subpath_continuous_family, JoinedIn.somePath_mem, refl_range, id_apply, source, coe_toContinuousMap, extend_extends', truncate_continuous_family, target, subpath_zero_one, range_subpath_of_le, segment_apply, coe_reparam, coe_mk', Homotopy.refl_apply, symm_range, Unitary.path_apply, truncate_range, Homotopic.concat_subpath, IsCoveringMap.liftPath_trans
instHasUncurryPath πŸ“–CompOp
2 mathmath: continuous_uncurry_iff, truncate_const_continuous_family
instTopologicalSpace πŸ“–CompOp
10 mathmath: GenLoop.loopHomeo_apply, continuous_symm, continuous_delayReflRight, continuous_delayReflLeft, instContinuousEvalElemRealUnitInterval, GenLoop.continuous_fromLoop, continuous_uncurry_iff, GenLoop.loopHomeo_symm_apply, continuous_trans, GenLoop.continuous_toLoop
inv πŸ“–CompOp
1 mathmath: inv_apply
map πŸ“–CompOp
11 mathmath: Homotopic.map_lift, Homotopy.map_apply, Homotopic.map, Homotopic.map_trans_evalAt, Homotopic.Quotient.mk_map, FundamentalGroup.mapOfEq_apply, map_trans, map_id, map_coe, map_symm, map_map
map' πŸ“–CompOpβ€”
mul πŸ“–CompOp
1 mathmath: mul_apply
neg πŸ“–CompOp
1 mathmath: neg_apply
ofLine πŸ“–CompOp
2 mathmath: ofLine_extend, ofLine_mem
pi πŸ“–CompOp
3 mathmath: pi_coe, trans_pi_eq_pi_trans, Homotopic.pi_lift
prod πŸ“–CompOp
3 mathmath: trans_prod_eq_prod_trans, prod_coe, Homotopic.prod_lift
refl πŸ“–CompOp
28 mathmath: FundamentalGroupoid.eqToHom_eq, subpath_self, delayReflRight_zero, truncate_self, curveIntegralFun_refl, Homotopic.trans_symm, truncate_zero_zero, Homotopic.refl_trans, concat_zero, delayReflLeft_zero, segment_same, refl_apply, CurveIntegrable.refl, curveIntegral_refl, Homotopic.trans_refl, Homotopic.symm_trans, refl_symm, refl_trans_refl, refl_range, Homotopy.trans_refl_reparam, refl_reparam, FundamentalGroupoid.id_eq_path_refl, concat_refl, truncate_one_one, simply_connected_iff_loops_nullhomotopic, refl_extend, Homotopic.Quotient.mk_refl, isSimplyConnected_iff_exists_homotopy_refl_forall_mem
reparam πŸ“–CompOp
6 mathmath: reparam_id, Homotopy.trans_assoc_reparam, range_reparam, Homotopy.trans_refl_reparam, refl_reparam, coe_reparam
toContinuousMap πŸ“–CompOp
18 mathmath: Homotopy.map_apply, Homotopy.target, Homotopy.hcomp_half, Homotopy.hcomp_apply, Homotopy.symm_apply, Homotopy.eval_apply, source', Homotopy.trans_apply, Homotopy.cast_apply, Homotopy.coeFn_injective, target', coe_toContinuousMap, Homotopy.source, Homotopy.symmβ‚‚_apply, Homotopy.refl_apply, GenLoop.homotopyFrom_apply, GenLoop.fromLoop_coe, isSimplyConnected_iff_exists_homotopy_refl_forall_mem
trans πŸ“–CompOp
42 mathmath: Homotopic.trans_assoc, Homotopic.comp_lift, delayReflRight_zero, trans_pi_eq_pi_trans, curveIntegralFun_trans_aeeq_right, extend_trans_of_le_half, Homotopic.trans_symm, Homotopy.hcomp_half, Homotopy.hcomp_apply, Homotopic.map_trans_evalAt, CurveIntegrable.intervalIntegrable_curveIntegralFun_trans_left, Homotopic.refl_trans, Homotopy.trans_assoc_reparam, cast_trans, curveIntegralFun_trans_of_half_lt, delayReflLeft_zero, concat_succ, trans_prod_eq_prod_trans, uniformContinuous_trans, Continuous.path_trans, curveIntegral_trans, trans_continuous_family, map_trans, Homotopic.trans_refl, Homotopic.symm_trans, trans_symm, trans_apply, trans_range, continuous_trans, refl_trans_refl, Homotopic.Quotient.mk_trans, Homotopic.hcomp, curveIntegralFun_trans_aeeq_left, Homotopy.trans_refl_reparam, trans_cast, CurveIntegrable.trans, curveIntegralFun_trans_of_lt_half, CurveIntegrable.intervalIntegrable_curveIntegralFun_trans_right, GenLoop.fromLoop_trans_toLoop, extend_trans_of_half_le, Homotopic.concat_two, IsCoveringMap.liftPath_trans
truncate πŸ“–CompOp
7 mathmath: truncate_self, truncate_zero_zero, truncate_zero_one, truncate_const_continuous_family, truncate_continuous_family, truncate_one_one, truncate_range
truncateOfLE πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
add
β€”β€”
bijective_cast πŸ“–mathematicalβ€”Function.Bijective
Path
cast
β€”Function.bijective_id
cast_coe πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
cast
β€”β€”
cast_rfl_rfl πŸ“–mathematicalβ€”castβ€”β€”
cast_symm πŸ“–mathematicalβ€”cast
symm
β€”β€”
cast_trans πŸ“–mathematicalβ€”cast
trans
β€”β€”
coe_mk' πŸ“–mathematicalContinuousMap.toFun
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
DFunLike.coe
Path
instFunLike
ContinuousMap
ContinuousMap.instFunLike
β€”Real.instIsOrderedRing
coe_mk_mk πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
DFunLike.coe
Path
instFunLike
β€”Real.instIsOrderedRing
coe_reparam πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
DFunLike.coe
Path
instFunLike
reparam
β€”Real.instIsOrderedRing
coe_toContinuousMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
toContinuousMap
Path
instFunLike
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
Path
instFunLike
β€”ContinuousMap.continuous_toFun
continuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
Path
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instFunLike
β€”ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
continuous_extend πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
extend
β€”Continuous.Icc_extend'
instOrderTopologyReal
continuous
continuous_symm πŸ“–mathematicalβ€”Continuous
Path
instTopologicalSpace
symm
β€”continuous_uncurry_iff
symm_continuous_family
Continuous.eval
instContinuousEvalElemRealUnitInterval
Continuous.fst
continuous_id'
Continuous.snd
continuous_trans πŸ“–mathematicalβ€”Continuous
Path
instTopologicalSpaceProd
instTopologicalSpace
trans
β€”Continuous.path_trans
Continuous.fst
continuous_id'
Continuous.snd
continuous_uncurry_extend_of_continuous_family πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
instHasUncurryPath
Function.hasUncurryInduction
Function.hasUncurryBase
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
extend
β€”Continuous.comp
zero_le_one
Real.instZeroLEOneClass
Continuous.prodMap
continuous_id
continuous_projIcc
instOrderTopologyReal
continuous_uncurry_iff πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
instHasUncurryPath
Path
instTopologicalSpace
β€”continuousMapClass
continuous_induced_rng
ContinuousMap.continuous_uncurry_of_continuous
locallyCompact_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
ContinuousMap.continuous_of_continuous_uncurry
ContinuousMapClass.map_continuous
exists_congr πŸ“–mathematicalβ€”castβ€”Function.Surjective.exists
Function.Bijective.surjective
bijective_cast
ext πŸ“–β€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
β€”β€”Real.instIsOrderedRing
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
β€”ext
extend_apply πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Path
Set.Elem
unitInterval
instFunLike
β€”Set.IccExtend_of_mem
extend_cast πŸ“–mathematicalβ€”extend
cast
β€”β€”
extend_extends πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Path
Set.Elem
unitInterval
instFunLike
β€”extend_apply
extend_extends' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
Path
Set.Elem
unitInterval
instFunLike
β€”Set.IccExtend_val
extend_of_le_zero πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
β€”Set.left_mem_Icc
Set.IccExtend_of_le_left
source
extend_of_one_le πŸ“–mathematicalReal
Real.instLE
Real.instOne
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
β€”Set.right_mem_Icc
Set.IccExtend_of_right_le
target
extend_one πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instOne
β€”Real.instZeroLEOneClass
extend_apply
target
extend_range πŸ“–mathematicalβ€”Set.range
Real
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Set.Elem
unitInterval
Path
instFunLike
β€”Set.IccExtend_range
extend_symm πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
symm
Real.instSub
Real.instOne
β€”extend_symm_apply
extend_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
symm
Real.instSub
Real.instOne
β€”unitInterval.symm_projIcc
extend_trans_of_half_le πŸ“–mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
trans
Real.instSub
Real.instMul
β€”Nat.instAtLeastTwoHAddOfNat
sub_sub_cancel
extend_symm_apply
trans_symm
extend_trans_of_le_half
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Ring.add_pf_add_gt
extend_trans_of_le_half πŸ“–mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
trans
Real.instMul
β€”Nat.instAtLeastTwoHAddOfNat
le_total
extend_of_le_zero
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toCharZero
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
extend_apply
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
trans_apply
extend_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instZero
β€”Real.instZeroLEOneClass
extend_apply
source
id_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
instFunLike
id
β€”Real.instIsOrderedRing
image_extend_of_subset πŸ“–mathematicalSet
Real
Set.instHasSubset
unitInterval
Set.image
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Set.range
Set.Elem
Path
instFunLike
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.image_subset_range
extend_range
Set.range_subset_iff
extend_extends'
instContinuousEvalElemRealUnitInterval πŸ“–mathematicalβ€”ContinuousEval
Path
Set.Elem
Real
unitInterval
instFunLike
instTopologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”ContinuousEval.of_continuous_forget
ContinuousMap.instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
locallyCompact_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
continuousMapClass
continuous_induced_dom
inv_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
inv
β€”β€”
map_coe πŸ“–mathematicalContinuousDFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
map
β€”β€”
map_id πŸ“–mathematicalβ€”map
continuous_id
β€”ext
continuous_id
map_map πŸ“–mathematicalContinuousmap
Continuous.comp
β€”ext
Continuous.comp
map_symm πŸ“–mathematicalContinuoussymm
map
β€”β€”
map_trans πŸ“–mathematicalContinuousmap
trans
β€”ext
Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
trans_apply
map_coe
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
mul
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
neg
β€”β€”
ofLine_extend πŸ“–mathematicalβ€”ofLine
DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
extend_zero
extend_one
β€”ext
extend_zero
extend_one
extend_apply
Subtype.coe_eta
ofLine_mem πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
unitInterval
Real.instZero
Real.instOne
Set
Set.instMembership
Set.image
DFunLike.coe
Path
Set.Elem
instFunLike
ofLine
β€”β€”
pi_coe πŸ“–mathematicalβ€”DFunLike.coe
Path
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instFunLike
pi
β€”β€”
prod_coe πŸ“–mathematicalβ€”DFunLike.coe
Path
instTopologicalSpaceProd
Set.Elem
Real
unitInterval
instFunLike
prod
β€”β€”
range_coe πŸ“–mathematicalβ€”Set.range
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path
toContinuousMap
instFunLike
continuousMapClass
setOf
DFunLike.coe
ContinuousMap.instFunLike
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”Set.Subset.antisymm
continuousMapClass
Real.instIsOrderedRing
Set.range_subset_iff
source
target
range_reparam πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
Set.range
DFunLike.coe
Path
instFunLike
reparam
β€”Real.instIsOrderedRing
Set.range_eq_univ
zero_le_one'
Real.instZeroLEOneClass
Continuous.Icc_extend'
instOrderTopologyReal
intermediate_value_Icc
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Subtype.instOrderClosedTopology
OrderTopology.to_orderClosedTopology
Continuous.continuousOn
Set.right_mem_Icc
Set.Icc.mk_one
Set.left_mem_Icc
Set.Icc.mk_zero
Set.IccExtend_right
Set.IccExtend_left
Set.IccExtend_of_mem
Set.range_comp
Set.image_univ
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
refl
β€”β€”
refl_extend πŸ“–mathematicalβ€”extend
refl
ContinuousMap.const
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”β€”
refl_range πŸ“–mathematicalβ€”Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
instFunLike
refl
Set
Set.instSingletonSet
β€”Set.range_const
Nontrivial.to_nonempty
unitInterval.instNontrivialElemReal
refl_reparam πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
reparam
refl
β€”Real.instIsOrderedRing
ext
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_trans_refl πŸ“–mathematicalβ€”trans
refl
β€”ext
one_div
Real.instIsOrderedRing
reparam_id πŸ“–mathematicalβ€”reparam
Set.Elem
Real
unitInterval
continuous_id
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
β€”ext
continuous_id
Real.instIsOrderedRing
source πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”source'
source' πŸ“–mathematicalβ€”ContinuousMap.toFun
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toContinuousMap
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
source_mem_range πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
instFunLike
β€”Real.instIsOrderedRing
source
symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
symm
unitInterval.symm
β€”β€”
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
Path
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_cast πŸ“–mathematicalβ€”symm
cast
β€”β€”
symm_continuous_family πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
instHasUncurryPath
symmβ€”Continuous.comp
Continuous.prodMap
continuous_id
unitInterval.continuous_symm
symm_range πŸ“–mathematicalβ€”Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
instFunLike
symm
β€”Function.Surjective.range_comp
Function.Involutive.surjective
unitInterval.symm_involutive
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
target πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”target'
target' πŸ“–mathematicalβ€”ContinuousMap.toFun
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toContinuousMap
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”β€”
target_mem_range πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
instFunLike
β€”Real.instIsOrderedRing
target
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
instFunLike
trans
Real.instLE
Set
Set.instMembership
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.decidableLE
Real.instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Set.Icc
Real.instPreorder
Real.instZero
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Ring.toSemiring
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instAddCommMonoid
Real.instIsOrderedAddMonoid
Preorder.toLE
Real.instSub
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
PartialOrder.toPreorder
LinearOrder.toPartialOrder
Real.linearOrder
Preorder.toLT
not_le
β€”Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
extend_apply
trans_cast πŸ“–mathematicalβ€”trans
cast
β€”β€”
trans_continuous_family πŸ“–mathematicalContinuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Function.HasUncurry.uncurry
instHasUncurryPath
transβ€”continuous_uncurry_extend_of_continuous_family
Continuous.if_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.comp
Nat.instAtLeastTwoHAddOfNat
Continuous.prodMap
continuous_id'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_const
continuous_subtype_val
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_snd
Real.instZeroLEOneClass
one_div
mul_inv_cancelβ‚€
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
extend_apply
target
sub_self
source
trans_pi_eq_pi_trans πŸ“–mathematicalβ€”trans
Pi.topologicalSpace
pi
β€”ext
trans_prod_eq_prod_trans πŸ“–mathematicalβ€”trans
instTopologicalSpaceProd
prod
β€”β€”
trans_range πŸ“–mathematicalβ€”Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
instFunLike
trans
Set
Set.instUnion
β€”extend_range
Set.image_univ
Nat.instAtLeastTwoHAddOfNat
Set.Iic_union_Ici
Set.image_union
Set.EqOn.image_eq
extend_trans_of_le_half
Set.mem_Iic
extend_trans_of_half_le
Set.mem_Ici
Set.image_image
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Set.image_mul_left_Iic
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
image_extend_of_subset
Set.image_mul_left_Ici
Set.image_sub_const_Ici
Real.instIsOrderedAddMonoid
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
trans_symm πŸ“–mathematicalβ€”symm
trans
β€”ext
Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
trans_apply
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
unitInterval.coe_symm_eq
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_eq
target
unitInterval.symm_one
source
mul_sub
sub_sub_eq_add_sub
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Linarith.add_neg
lt_of_not_ge
truncate_const_continuous_family πŸ“–mathematicalβ€”Continuous
Real
Set.Elem
unitInterval
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
Function.HasUncurry.uncurry
instHasUncurryPath
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
extend
Real.instMin
truncate
β€”Continuous.prodMk
continuous_const
continuous_id'
Continuous.comp
truncate_continuous_family
truncate_continuous_family πŸ“–mathematicalβ€”Continuous
Real
Set.Elem
unitInterval
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
DFunLike.coe
Path
ContinuousMap
ContinuousMap.instFunLike
extend
Real.instMin
instFunLike
truncate
β€”Continuous.comp
continuous_extend
Continuous.min
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.max
continuous_subtype_val
continuous_snd
continuous_fst
truncate_one_one πŸ“–mathematicalβ€”truncate
Real
Real.instOne
cast
refl
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instMin
extend_one
β€”extend_one
truncate_self
truncate_range πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instMin
instFunLike
truncate
β€”extend_range
truncate_self πŸ“–mathematicalβ€”truncate
cast
DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
refl
Real.instMin
β€”ext
inf_of_le_right
Real.instIsOrderedRing
truncate_zero_one πŸ“–mathematicalβ€”truncate
Real
Real.instZero
Real.instOne
cast
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instMin
β€”ext
cast_coe
truncate.eq_1
max_eq_left
min_eq_left
extend_extends'
truncate_zero_zero πŸ“–mathematicalβ€”truncate
Real
Real.instZero
cast
refl
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
extend
Real.instMin
extend_zero
β€”extend_zero
truncate_self

Path.simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

---

← Back to Index