Documentation Verification Report

Perfect

📁 Source: Mathlib/Topology/Perfect.lean

Statistics

MetricCount
DefinitionsPerfect, Perfect, Preperfect
3
Theoremsnhds_inter, preperfect_of_nontrivial, acc, closed, closure_nhds_inter, splitting, not_isolated, univ_perfect, univ_preperfect, open_inter, perfect_closure, exists_countable_union_perfect_of_isClosed, exists_perfect_nonempty_of_isClosed_of_not_countable, instPerfectSpaceOfT1SpaceOfConnectedSpaceOfNontrivial, perfectSpace_def, perfectSpace_iff_forall_not_isolated, perfect_def, preperfect_iff_nhds, preperfect_iff_perfect_closure
19
Total22

AccPt

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_inter 📖mathematicalSet
Filter
Filter.instMembership
nhds
AccPt
Filter.principal
Set.instInter
Filter.le_principal_iff
mem_nhdsWithin_of_mem_nhds
eq_1
Filter.inf_principal
inf_assoc
inf_of_le_left

IsPreconnected

Theorems

NameKindAssumesProvesValidatesDepends On
preperfect_of_nontrivial 📖mathematicalSet.Nontrivial
IsPreconnected
PreperfectaccPt_principal_iff_clusterPt
mem_closure_iff_clusterPt
Set.singleton_inter_nonempty
Set.Nonempty.right
isPreconnected_closed_iff
isClosed_singleton
isClosed_closure
Set.union_diff_self
Set.union_subset_union_right
subset_closure
Set.inter_singleton_nonempty
Set.Nontrivial.exists_ne

Nat

Definitions

NameCategoryTheorems
Perfect 📖MathDef
7 mathmath: abundant_iff_not_perfect_and_not_deficient, perfect_iff_sum_properDivisors, perfect_iff_sum_divisors_eq_two_mul, deficient_or_perfect_or_abundant, deficient_iff_not_abundant_and_not_perfect, perfect_iff_not_abundant_and_not_deficient, Prime.not_perfect

Perfect

Theorems

NameKindAssumesProvesValidatesDepends On
acc 📖mathematicalPerfectPreperfect
closed 📖mathematicalPerfectIsClosed
closure_nhds_inter 📖mathematicalPerfect
Set
Set.instMembership
IsOpen
closure
Set.instInter
Set.Nonempty
Preperfect.perfect_closure
Preperfect.open_inter
acc
Set.Nonempty.closure
splitting 📖mathematicalPerfect
Set.Nonempty
Set
Set.instHasSubset
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
acc
accPt_iff_nhds
Filter.univ_mem
exists_open_nhds_disjoint_closure
closure_nhds_inter
IsClosed.closure_subset_iff
closed
Set.inter_subset_right
Disjoint.mono
closure_mono
Set.inter_subset_left

PerfectSpace

Theorems

NameKindAssumesProvesValidatesDepends On
not_isolated 📖mathematicalFilter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
perfectSpace_iff_forall_not_isolated
univ_perfect 📖mathematicalPerfect
Set.univ
isClosed_univ
univ_preperfect
univ_preperfect 📖mathematicalPreperfect
Set.univ

Preperfect

Theorems

NameKindAssumesProvesValidatesDepends On
open_inter 📖mathematicalPreperfect
IsOpen
Set
Set.instInter
AccPt.nhds_inter
IsOpen.mem_nhds
perfect_closure 📖mathematicalPreperfectPerfect
closure
isClosed_closure
AccPt.mono
Filter.principal_mono
subset_closure
AccPt.eq_1
nhdsWithin.eq_1
inf_assoc
Filter.inf_principal
closure_eq_cluster_pts

(root)

Definitions

NameCategoryTheorems
Perfect 📖CompData
7 mathmath: exists_countable_union_perfect_of_isClosed, preperfect_iff_perfect_closure, Preperfect.perfect_closure, exists_perfect_nonempty_of_isClosed_of_not_countable, perfect_def, perfect_iff_eq_derivedSet, PerfectSpace.univ_perfect
Preperfect 📖MathDef
8 mathmath: preperfect_iff_perfect_closure, Perfect.acc, preperfect_iff_nhds, perfectSpace_def, perfect_def, PerfectSpace.univ_preperfect, preperfect_iff_subset_derivedSet, IsPreconnected.preperfect_of_nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
exists_countable_union_perfect_of_isClosed 📖mathematicalSet.Countable
Perfect
Set
Set.instUnion
TopologicalSpace.exists_countable_basis
Set.iUnion_inter
Set.Countable.biUnion
Set.Countable.mono
Set.inter_subset_left
Set.inter_subset_right
IsClosed.sdiff
isOpen_biUnion
TopologicalSpace.IsTopologicalBasis.isOpen
preperfect_iff_nhds
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
Set.mem_union_right
Set.mem_inter
Set.mem_union_left
Set.Countable.union
Set.mem_biUnion
Mathlib.Tactic.Push.not_and_eq
Set.countable_singleton
Set.inter_comm
Set.inter_union_diff
exists_perfect_nonempty_of_isClosed_of_not_countable 📖mathematicalSet.CountablePerfect
Set.Nonempty
Set
Set.instHasSubset
exists_countable_union_perfect_of_isClosed
Set.nonempty_iff_ne_empty
Set.union_empty
Set.subset_union_right
instPerfectSpaceOfT1SpaceOfConnectedSpaceOfNontrivial 📖mathematicalPerfectSpaceIsPreconnected.preperfect_of_nontrivial
PreconnectedSpace.isPreconnected_univ
ConnectedSpace.toPreconnectedSpace
Set.nontrivial_univ_iff
perfectSpace_def 📖mathematicalPerfectSpace
Preperfect
Set.univ
perfectSpace_iff_forall_not_isolated 📖mathematicalPerfectSpace
Filter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.principal_univ
inf_of_le_left
perfect_def 📖mathematicalPerfect
IsClosed
Preperfect
preperfect_iff_nhds 📖mathematicalPreperfect
Set
Set.instMembership
Set.instInter
preperfect_iff_perfect_closure 📖mathematicalPreperfect
Perfect
closure
Preperfect.perfect_closure
Perfect.acc
subset_closure
accPt_iff_frequently
Ne.nhdsWithin_compl_singleton
frequently_frequently_nhds
Filter.Frequently.mono

---

← Back to Index