Perfect
📁 Source: Mathlib/Topology/Perfect.lean
Statistics
AccPt
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
nhds_inter 📖 | mathematical | SetFilterFilter.instMembershipnhds | AccPtFilter.principalSet.instInter | — | Filter.le_principal_iffmem_nhdsWithin_of_mem_nhdseq_1Filter.inf_principalinf_associnf_of_le_left |
IsPreconnected
Theorems
Nat
Definitions
| Name | Category | Theorems |
|---|---|---|
Perfect 📖 | MathDef |
Perfect
Theorems
PerfectSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
not_isolated 📖 | mathematical | — | Filter.NeBotnhdsWithinCompl.complSetSet.instComplSet.instSingletonSet | — | perfectSpace_iff_forall_not_isolated |
univ_perfect 📖 | mathematical | — | PerfectSet.univ | — | isClosed_univuniv_preperfect |
univ_preperfect 📖 | mathematical | — | PreperfectSet.univ | — | — |
Preperfect
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
open_inter 📖 | mathematical | PreperfectIsOpen | SetSet.instInter | — | AccPt.nhds_interIsOpen.mem_nhds |
perfect_closure 📖 | mathematical | Preperfect | Perfectclosure | — | isClosed_closureAccPt.monoFilter.principal_monosubset_closureAccPt.eq_1nhdsWithin.eq_1inf_assocFilter.inf_principalclosure_eq_cluster_pts |
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
Perfect 📖 | CompData | |
Preperfect 📖 | MathDef |
Theorems
---