Documentation Verification Report

QuasiSeparated

πŸ“ Source: Mathlib/Topology/QuasiSeparated.lean

Statistics

MetricCount
DefinitionsIsQuasiSeparated, QuasiSeparatedSpace
2
Theoremsinter_of_isOpen, image_of_isEmbedding, of_quasiSeparatedSpace, of_subset, to_quasiSeparatedSpace, inter_isCompact, of_isOpenEmbedding, of_isTopologicalBasis, to_quasiSeparatedSpace, isQuasiSeparated_iff, quasiSeparatedSpace, isQuasiSeparated_iff_quasiSeparatedSpace, isQuasiSeparated_univ, isQuasiSeparated_univ_iff, quasiSeparatedSpace_congr, quasiSeparatedSpace_iff
16
Total18

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
inter_of_isOpen πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instInter
β€”QuasiSeparatedSpace.inter_isCompact

IsQuasiSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
image_of_isEmbedding πŸ“–mathematicalIsQuasiSeparated
Topology.IsEmbedding
Set.imageβ€”Set.preimage_inter
Set.image_preimage_eq_inter_range
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Set.image_subset_range
IsCompact.image
Set.InjOn.mem_image_iff
Function.Injective.injOn
Topology.IsEmbedding.injective
Set.subset_univ
Continuous.isOpen_preimage
Topology.IsEmbedding.continuous
Topology.IsEmbedding.isCompact_iff
of_quasiSeparatedSpace πŸ“–mathematicalβ€”IsQuasiSeparatedβ€”of_subset
isQuasiSeparated_univ
Set.subset_univ
of_subset πŸ“–β€”IsQuasiSeparated
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset

NoetherianSpace

Theorems

NameKindAssumesProvesValidatesDepends On
to_quasiSeparatedSpace πŸ“–mathematicalβ€”QuasiSeparatedSpaceβ€”TopologicalSpace.NoetherianSpace.isCompact

QuasiSeparatedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
inter_isCompact πŸ“–mathematicalIsOpen
IsCompact
Set
Set.instInter
β€”β€”
of_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbeddingQuasiSeparatedSpaceβ€”isQuasiSeparated_univ_iff
Topology.IsOpenEmbedding.isQuasiSeparated_iff
IsQuasiSeparated.of_quasiSeparatedSpace
of_isTopologicalBasis πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set.range
Set
IsCompact
Set.instInter
QuasiSeparatedSpaceβ€”isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis
Set.inter_self
Set.iUnionβ‚‚_inter_iUnionβ‚‚
Set.Finite.isCompact_biUnion

T2Space

Theorems

NameKindAssumesProvesValidatesDepends On
to_quasiSeparatedSpace πŸ“–mathematicalβ€”QuasiSeparatedSpaceβ€”IsCompact.inter

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isQuasiSeparated_iff πŸ“–mathematicalTopology.IsOpenEmbeddingIsQuasiSeparated
Set.image
β€”IsQuasiSeparated.image_of_isEmbedding
isEmbedding
Topology.IsEmbedding.isCompact_iff
Set.image_inter
Topology.IsEmbedding.injective
toIsEmbedding
Set.image_mono
isOpenMap
IsCompact.image
continuous
quasiSeparatedSpace πŸ“–mathematicalTopology.IsOpenEmbeddingQuasiSeparatedSpaceβ€”isQuasiSeparated_univ_iff
isQuasiSeparated_iff
IsQuasiSeparated.of_subset
isQuasiSeparated_univ
Set.subset_univ

(root)

Definitions

NameCategoryTheorems
IsQuasiSeparated πŸ“–MathDef
6 mathmath: isQuasiSeparated_univ_iff, IsQuasiSeparated.of_quasiSeparatedSpace, Topology.IsOpenEmbedding.isQuasiSeparated_iff, isQuasiSeparated_univ, AlgebraicGeometry.IsAffineOpen.isQuasiSeparated, isQuasiSeparated_iff_quasiSeparatedSpace
QuasiSeparatedSpace πŸ“–CompData
25 mathmath: isQuasiSeparated_univ_iff, AlgebraicGeometry.instHasAffinePropertyQuasiSeparatedQuasiSeparatedSpaceCarrierCarrierCommRingCat, PrimeSpectrum.instQuasiSeparatedSpace, T2Space.to_quasiSeparatedSpace, AlgebraicGeometry.quasiCompact_affineProperty_iff_quasiSeparatedSpace, SpectralSpace.toQuasiSeparatedSpace, AlgebraicGeometry.IsLocallyNoetherian.quasiSeparatedSpace, AlgebraicGeometry.Scheme.instQuasiSeparatedSpaceCarrierCarrierCommRingCatOfIsSeparated, QuasiSeparatedSpace.of_isTopologicalBasis, AlgebraicGeometry.quasiSeparatedSpace_of_isAffine, AlgebraicGeometry.quasiSeparated_iff_quasiSeparatedSpace, Topology.IsOpenEmbedding.quasiSeparatedSpace, AlgebraicGeometry.quasiSeparatedSpace_iff_forall_affineOpens, quasiSeparatedSpace_congr, AlgebraicGeometry.quasiSeparatedSpace_of_quasiSeparated, NoetherianSpace.to_quasiSeparatedSpace, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiSeparated, isQuasiSeparated_iff_quasiSeparatedSpace, AlgebraicGeometry.Scheme.quasiSeparatedSpace_of_isOpenCover, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiCompact_prod_lift, QuasiSeparatedSpace.of_isOpenEmbedding, QuasiSeparatedSpace.of_isOpenCover, AlgebraicGeometry.quasiSeparatedSpace_iff_affine, quasiSeparatedSpace_iff, AlgebraicGeometry.quasiSeparated_over_affine_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isQuasiSeparated_iff_quasiSeparatedSpace πŸ“–mathematicalIsOpenIsQuasiSeparated
QuasiSeparatedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isQuasiSeparated_univ_iff
Set.image_univ
Subtype.range_coe_subtype
Topology.IsOpenEmbedding.isQuasiSeparated_iff
IsOpen.isOpenEmbedding_subtypeVal
isQuasiSeparated_univ πŸ“–mathematicalβ€”IsQuasiSeparated
Set.univ
β€”isQuasiSeparated_univ_iff
isQuasiSeparated_univ_iff πŸ“–mathematicalβ€”IsQuasiSeparated
Set.univ
QuasiSeparatedSpace
β€”quasiSeparatedSpace_iff
quasiSeparatedSpace_congr πŸ“–mathematicalβ€”QuasiSeparatedSpaceβ€”QuasiSeparatedSpace.of_isOpenEmbedding
Homeomorph.isOpenEmbedding
quasiSeparatedSpace_iff πŸ“–mathematicalβ€”QuasiSeparatedSpace
IsCompact
Set
Set.instInter
β€”β€”

---

← Back to Index