Documentation Verification Report

SeparatedMap

📁 Source: Mathlib/Topology/SeparatedMap.lean

Statistics

MetricCount
DefinitionsIsLocallyInjective, IsSeparatedMap
2
TheoremsmapPullback, IsLocallyInjective, isSeparatedMap, comp_left, comp_right, isOpen_eqLocus, IsLocallyInjective_iff_isOpenEmbedding, comp_left, comp_right, constOn_of_comp, const_of_comp, eqOn_of_comp_eqOn, eq_of_comp_eq, isClosed_eqLocus, pullback, isSeparatedMap, toPullbackDiag, discreteTopology_iff_locallyInjective, isLocallyInjective_iff_isOpenMap, isLocallyInjective_iff_isOpen_diagonal, isLocallyInjective_iff_nhds, isSeparatedMap_iff_disjoint_nhds, isSeparatedMap_iff_isClosedEmbedding, isSeparatedMap_iff_isClosedMap, isSeparatedMap_iff_isClosed_diagonal, isSeparatedMap_iff_nhds, t2space_iff_isSeparatedMap
27
Total29

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
mapPullback 📖mathematicalContinuousFunction.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
Function.mapPullback
continuous_induced_rng
prodMk
comp
continuous_fst
continuous_subtype_val
continuous_snd

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
IsLocallyInjective 📖mathematicalIsLocallyInjectiveisOpen_univ
isSeparatedMap 📖mathematicalIsSeparatedMap

IsLocallyInjective

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left 📖IsLocallyInjectiveFunction.Injective.comp_injOn
comp_right 📖IsLocallyInjective
Continuous
isLocallyInjective_iff_isOpen_diagonal
Function.Injective.preimage_pullbackDiagonal
IsOpen.preimage
Continuous.mapPullback
isOpen_eqLocus 📖mathematicalContinuous
IsLocallyInjective
IsOpen
setOf
IsOpen.preimage
Continuous.prodMk
isLocallyInjective_iff_isOpen_diagonal

IsSeparatedMap

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left 📖IsSeparatedMap
comp_right 📖IsSeparatedMap
Continuous
isSeparatedMap_iff_isClosed_diagonal
Function.Injective.preimage_pullbackDiagonal
IsClosed.preimage
Continuous.mapPullback
constOn_of_comp 📖IsSeparatedMap
IsLocallyInjective
IsPreconnected
ContinuousOn
Set
Set.instMembership
eqOn_of_comp_eqOn
Continuous.continuousOn
continuous_const
const_of_comp 📖IsSeparatedMap
IsLocallyInjective
Continuous
eq_of_comp_eq
continuous_const
eqOn_of_comp_eqOn 📖IsSeparatedMap
IsLocallyInjective
IsPreconnected
ContinuousOn
Set.EqOn
Set
Set.instMembership
Set.restrict_eq_restrict_iff
eq_of_comp_eq
isPreconnected_iff_preconnectedSpace
continuousOn_iff_continuous_restrict
eq_of_comp_eq 📖IsSeparatedMap
IsLocallyInjective
Continuous
Set.mem_univ
IsClopen.eq_univ
isClosed_eqLocus
IsLocallyInjective.isOpen_eqLocus
isClosed_eqLocus 📖mathematicalContinuous
IsSeparatedMap
IsClosed
setOf
IsClosed.preimage
Continuous.prodMk
isSeparatedMap_iff_isClosed_diagonal
pullback 📖mathematicalIsSeparatedMapFunction.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
Function.Pullback.snd
isSeparatedMap_iff_isClosed_diagonal
preimage_map_fst_pullbackDiagonal
IsClosed.preimage
Function.pullback_comm_sq
Continuous.mapPullback
Continuous.comp
continuous_fst
continuous_subtype_val

T2Space

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparatedMap 📖mathematicalIsSeparatedMapt2_separation

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
toPullbackDiag 📖mathematicalTopology.IsEmbedding
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
toPullbackDiag
mk'
injective_toPullbackDiag
nhds_induced
nhds_prod_eq
Filter.comap_prod
Filter.comap_inf
Filter.comap_comap
Filter.comap_id'
inf_of_le_left

(root)

Definitions

NameCategoryTheorems
IsLocallyInjective 📖MathDef
7 mathmath: discreteTopology_iff_locallyInjective, isLocallyInjective_iff_isOpen_diagonal, isLocallyInjective_iff_isOpenMap, Function.Injective.IsLocallyInjective, IsLocallyInjective_iff_isOpenEmbedding, IsLocalHomeomorph.isLocallyInjective, isLocallyInjective_iff_nhds
IsSeparatedMap 📖MathDef
9 mathmath: isSeparatedMap_iff_disjoint_nhds, T2Space.isSeparatedMap, isSeparatedMap_iff_isClosedEmbedding, isSeparatedMap_iff_isClosedMap, t2space_iff_isSeparatedMap, Function.Injective.isSeparatedMap, isSeparatedMap_iff_nhds, IsCoveringMap.isSeparatedMap, isSeparatedMap_iff_isClosed_diagonal

Theorems

NameKindAssumesProvesValidatesDepends On
IsLocallyInjective_iff_isOpenEmbedding 📖mathematicalIsLocallyInjective
Topology.IsOpenEmbedding
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
toPullbackDiag
isLocallyInjective_iff_isOpen_diagonal
range_toPullbackDiag
Topology.IsEmbedding.toPullbackDiag
Topology.IsOpenEmbedding.isOpen_range
discreteTopology_iff_locallyInjective 📖mathematicalDiscreteTopology
IsLocallyInjective
discreteTopology_iff_singleton_mem_nhds
isLocallyInjective_iff_nhds
Set.injOn_singleton
Set.ext
mem_of_mem_nhds
isLocallyInjective_iff_isOpenMap 📖mathematicalIsLocallyInjective
IsOpenMap
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
toPullbackDiag
IsLocallyInjective_iff_isOpenEmbedding
Topology.IsOpenEmbedding.isOpenMap
Topology.IsOpenEmbedding.of_continuous_injective_isOpenMap
Topology.IsEmbedding.continuous
Topology.IsEmbedding.toPullbackDiag
injective_toPullbackDiag
isLocallyInjective_iff_isOpen_diagonal 📖mathematicalIsLocallyInjective
IsOpen
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
Function.pullbackDiagonal
nhds_induced
nhds_prod_eq
Filter.prod_mem_prod
Filter.mem_prod_iff
Filter.inter_mem
isLocallyInjective_iff_nhds 📖mathematicalIsLocallyInjective
Set
Filter
Filter.instMembership
nhds
Set.InjOn
IsOpen.mem_nhds
isOpen_interior
mem_interior_iff_mem_nhds
Set.InjOn.mono
interior_subset
isSeparatedMap_iff_disjoint_nhds 📖mathematicalIsSeparatedMap
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Filter.HasBasis.disjoint_iff
nhds_basis_opens
isSeparatedMap_iff_isClosedEmbedding 📖mathematicalIsSeparatedMap
Topology.IsClosedEmbedding
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
toPullbackDiag
isSeparatedMap_iff_isClosed_diagonal
range_toPullbackDiag
Topology.IsEmbedding.toPullbackDiag
Topology.IsClosedEmbedding.isClosed_range
isSeparatedMap_iff_isClosedMap 📖mathematicalIsSeparatedMap
IsClosedMap
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
toPullbackDiag
isSeparatedMap_iff_isClosedEmbedding
Topology.IsClosedEmbedding.isClosedMap
Topology.IsClosedEmbedding.of_continuous_injective_isClosedMap
Topology.IsEmbedding.continuous
Topology.IsEmbedding.toPullbackDiag
injective_toPullbackDiag
isSeparatedMap_iff_isClosed_diagonal 📖mathematicalIsSeparatedMap
IsClosed
Function.Pullback
instTopologicalSpaceSubtype
instTopologicalSpaceProd
Function.pullbackDiagonal
nhds_induced
nhds_prod_eq
subset_rfl
Set.instReflSubset
Filter.mem_prod_iff
Set.disjoint_left
isSeparatedMap_iff_nhds 📖mathematicalIsSeparatedMap
Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
t2space_iff_isSeparatedMap 📖mathematicalT2Space
IsSeparatedMap

---

← Back to Index