Basic
π Source: Mathlib/Topology/Separation/Basic.lean
Statistics
Bornology
Definitions
| Name | Category | Theorems |
|---|---|---|
relativelyCompact π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
relativelyCompact_eq_inCompact π | mathematical | β | relativelyCompactinstR0SpaceinCompact | β | extinstR0SpaceFilter.coclosedCompact_eq_cocompact |
Bornology.relativelyCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isBounded_iff π | mathematical | β | Bornology.IsBoundedBornology.relativelyCompactIsCompactclosure | β | Filter.compl_mem_coclosedCompact |
CofiniteTopology
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
continuous_of π | mathematical | β | ContinuousCofiniteTopologyinstTopologicalSpaceDFunLike.coeEquivEquivLike.toFunLikeEquiv.instEquivLikeof | β | t1Space_iff_continuous_cofinite_of |
ContinousWithinAt
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq_const_of_mem_closure π | β | ContinuousWithinAtSetSet.instMembershipclosure | β | β | ContinuousWithinAt.eq_const_of_mem_closure |
Continuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isOpen_mulSupport π | mathematical | Continuous | IsOpenFunction.mulSupport | β | IsOpen.preimageisOpen_ne |
isOpen_support π | mathematical | Continuous | IsOpenFunction.support | β | IsOpen.preimageisOpen_ne |
ContinuousAt
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eventually_ne π | mathematical | ContinuousAt | Filter.Eventuallynhds | β | Filter.Tendsto.eventually_netendsto |
ContinuousWithinAt
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eqOn_const_closure π | mathematical | ContinuousWithinAtSet.EqOn | closure | β | eq_const_of_mem_closure |
eq_const_of_mem_closure π | β | ContinuousWithinAtSetSet.instMembershipclosure | β | β | Set.mem_singleton_iffclosure_singletonmem_closure |
insert' π | mathematical | ContinuousWithinAt | SetSet.instInsert | β | continuousWithinAt_insert |
of_insert π | β | ContinuousWithinAtSetSet.instInsert | β | β | continuousWithinAt_insert |
Dense
Theorems
Filter
Theorems
Filter.HasBasis
Theorems
Filter.Tendsto
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eventually_ne π | mathematical | Filter.Tendstonhds | Filter.Eventually | β | eventuallyIsOpen.eventually_memisOpen_compl_singleton |
Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instDiscreteTopology π | mathematical | β | DiscreteTopology | β | discreteTopology_iff_forall_isClosedSet.Finite.isClosedSet.toFiniteSubtype.finite |
Finset
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isClosed π | mathematical | β | IsClosedSetLike.coeFinsetinstSetLike | β | Set.Finite.isClosedfinite_toSet |
Function
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
update_eventuallyEq_nhdsNE π | mathematical | β | Filter.EventuallyEqnhdsWithinCompl.complSetSet.instComplSet.instSingletonSetupdate | β | Filter.EventuallyEq.filter_monoupdate_eventuallyEq_cofinitenhdsNE_le_cofinite |
Homeomorph
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t0Space π | mathematical | β | T0Space | β | Topology.IsEmbedding.t0SpaceisEmbedding |
t1Space π | mathematical | β | T1Space | β | Topology.IsEmbedding.t1SpaceisEmbedding |
Inseparable
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq π | β | Inseparable | β | β | T0Space.t0 |
of_nhds_neBot π | mathematical | β | Inseparable | β | r1Space_iff_inseparable_or_disjoint_nhdsFilter.NeBot.neDisjoint.eq_bot |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_closed_singleton π | mathematical | Set.Nonempty | SetSet.instMembershipIsClosedSet.instSingletonSet | β | exists_minimal_nonempty_closed_subsetminimal_nonempty_closed_eq_singletonSet.mem_singleton |
IsCompact
Theorems
Ne
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
nhdsWithin_compl_singleton π | mathematical | β | nhdsWithinCompl.complSetSet.instComplSet.instSingletonSetnhds | β | IsOpen.nhdsWithin_eqisOpen_ne |
nhdsWithin_diff_singleton π | mathematical | β | nhdsWithinSetSet.instSDiffSet.instSingletonSet | β | Set.diff_eqSet.inter_commnhdsWithin_inter_of_memmem_nhdsWithin_of_mem_nhdsIsOpen.mem_nhdsisOpen_ne |
Pi
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instT0Space π | mathematical | T0Space | topologicalSpace | β | Inseparable.eqInseparable.mapcontinuous_apply |
Prod
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instT0Space π | mathematical | β | T0SpaceinstTopologicalSpaceProd | β | Inseparable.eqInseparable.mapcontinuous_fstcontinuous_snd |
R0Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure_singleton π | mathematical | β | closureSetSet.instSingletonSetFilter.kernhds | β | Set.extker_nhds_eq_specializes |
specializes_symmetric π | mathematical | β | SymmetricSpecializes | β | β |
R1Space
Theorems
SeparatedNhds
Theorems
SeparationQuotient
Theorems
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
continuousOn π | mathematical | β | ContinuousOn | β | continuousOn_iff_continuous_restrictcontinuous_of_discreteTopologyFinite.instDiscreteTopologySubtype.t1Space |
isClosed π | mathematical | β | IsClosed | β | Set.biUnion_of_singletonisClosed_biUnionisClosed_singleton |
isCompact_closure π | mathematical | β | IsCompactclosure | β | Bornology.relativelyCompact.isBounded_iffisBounded |
isDiscrete π | mathematical | β | IsDiscrete | β | Finite.instDiscreteTopologySubtype.t1Spaceto_subtype |
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure π | mathematical | Set.Subsingleton | closure | β | closure_eq |
closure_eq π | mathematical | Set.Subsingleton | closure | β | IsClosed.closure_eqisClosed |
isClosed π | mathematical | Set.Subsingleton | IsClosed | β | eq_empty_or_singletonisClosed_emptyisClosed_singleton |
Specializes
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq π | β | Specializes | β | β | t1Space_iff_specializes_imp_eq |
inseparable π | mathematical | Specializes | Inseparable | β | specializes_iff_inseparable |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t0Space π | mathematical | β | T0SpaceinstTopologicalSpaceSubtype | β | Topology.IsEmbedding.t0SpaceTopology.IsEmbedding.subtypeVal |
t1Space π | mathematical | β | T1SpaceinstTopologicalSpaceSubtype | β | Topology.IsEmbedding.t1SpaceTopology.IsEmbedding.subtypeVal |
T0Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_cover π | β | SetSet.instMembershipT0SpaceSet.EleminstTopologicalSpaceSubtype | β | β | CanLift.prfSubtype.canLiftInseparable.eqsubtype_inseparable_iff |
of_open_cover π | β | SetSet.instMembershipIsOpenT0SpaceSet.EleminstTopologicalSpaceSubtype | β | β | of_coverInseparable.mem_open_iff |
t0 π | β | Inseparable | β | β | β |
T1Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t0Space π | mathematical | β | T0Space | β | t1Space_iff_t0Space_and_r0Space |
t1 π | mathematical | β | IsClosedSetSet.instSingletonSet | β | β |
TopologicalSpace.IsTopologicalBasis
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq_iff π | mathematical | TopologicalSpace.IsTopologicalBasis | SetSet.instMembership | β | inseparable_iff_eqinseparable_iff |
exists_mem_of_ne π | mathematical | TopologicalSpace.IsTopologicalBasis | SetSet.instMembership | β | isOpen_iffisOpen_ne |
inseparable_iff π | mathematical | TopologicalSpace.IsTopologicalBasis | InseparableSetSet.instMembership | β | inseparable_iff_forall_isOpenisOpenFilter.HasBasis.eq_of_same_basisnhds_hasBasis |
Topology.IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t0Space π | mathematical | Topology.IsEmbedding | T0Space | β | t0Space_of_injective_of_continuousinjectivecontinuous |
t1Space π | mathematical | Topology.IsEmbedding | T1Space | β | t1Space_of_injective_of_continuousinjectivecontinuous |
Topology.IsInducing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
injective π | β | Topology.IsInducing | β | β | Inseparable.eqinseparable_iffInseparable.of_eq |
isEmbedding π | mathematical | Topology.IsInducing | Topology.IsEmbedding | β | injective |
r0Space π | mathematical | Topology.IsInducing | R0Space | β | specializes_iffSpecializes.symm |
r1Space π | mathematical | Topology.IsInducing | R1Space | β | R1Space.of_continuous_specializes_impcontinuousspecializes_iff |
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instT0Space π | mathematical | β | T0SpacetopologicalSpace | β | Topology.IsEmbedding.t0SpaceTopology.IsEmbedding.uliftDown |
instT1Space π | mathematical | β | T1SpacetopologicalSpace | β | Topology.IsEmbedding.t1SpaceTopology.IsEmbedding.uliftDown |
WeaklyLocallyCompactSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
locallyCompactSpace π | mathematical | β | LocallyCompactSpace | β | LocallyCompactSpace.of_hasBasisisCompact_isClosed_basis_nhds |
(root)
Definitions
Theorems
---