Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Separation/Basic.lean

Statistics

MetricCount
DefinitionsrelativelyCompact, R0Space, R1Space, T0Space, T1Space, specializationOrder
6
TheoremsisBounded_iff, relativelyCompact_eq_inCompact, continuous_of, eq_const_of_mem_closure, isOpen_mulSupport, isOpen_support, eventually_ne, eqOn_const_closure, eq_const_of_mem_closure, insert', of_insert, diff_finite, diff_finset, diff_singleton, exists_inter_eq_singleton_of_mem_discrete, eventually_ne, coclosedCompact_eq_cocompact, coclosedCompact_le_cofinite, instDiscreteTopology, isClosed, update_eventuallyEq_nhdsNE, t0Space, t1Space, eq, of_nhds_neBot, exists_closed_singleton, binary_compact_cover, closure, closure_eq_biUnion_closure_singleton, closure_eq_biUnion_inseparable, closure_of_subset, closure_subset_of_isOpen, finite_compact_cover, isCompact_isClosed_basis_nhds, mem_closure_iff_exists_inseparable, nhdsWithin_compl_singleton, nhdsWithin_diff_singleton, instT0Space, instT0Space, closure_singleton, specializes_symmetric, iInf, induced, inf, of_continuous_specializes_imp, sInf, specializes_or_disjoint_nhds, of_isCompact_isCompact_isClosed, instT0Space, t1Space_iff, continuousOn, isClosed, isCompact_closure, isDiscrete, closure, closure_eq, isClosed, eq, inseparable, t0Space, t1Space, of_cover, of_open_cover, t0, t0Space, t1, eq_iff, exists_mem_of_ne, inseparable_iff, t0Space, t1Space, injective, isEmbedding, r0Space, r1Space, instT0Space, instT1Space, locallyCompactSpace, biInter_basis_nhds, closure_singleton, compl_singleton_mem_nhds, compl_singleton_mem_nhdsSet_iff, compl_singleton_mem_nhds_iff, continuousAt_of_tendsto_nhds, continuousAt_update_of_ne, continuousOn_update_iff, continuousWithinAt_congr_set', continuousWithinAt_diff_singleton, continuousWithinAt_insert, continuousWithinAt_update_of_ne, disjoint_nhdsWithin_of_mem_discrete, disjoint_nhds_nhds_iff_not_inseparable, disjoint_nhds_nhds_iff_not_specializes, disjoint_nhds_pure, disjoint_pure_nhds, eq_of_tendsto_nhds, eventuallyEq_insert, eventually_ne_nhds, eventually_ne_nhdsWithin, eventually_nhdsNE_eventually_nhds_iff, eventually_nhdsWithin_eventually_nhds_iff_of_isOpen, exists_isCompact_superset_iff, exists_isOpen_mem_isCompact_closure, exists_isOpen_singleton_of_isOpen_finite, exists_isOpen_superset_and_isCompact_closure, exists_isOpen_xor'_mem, exists_mem_nhds_isCompact_isClosed, exists_mem_nhds_isCompact_mapsTo_of_isCompact_mem_nhds, exists_open_singleton_of_finite, infinite_of_mem_nhds, injective_nhdsSet, inseparable_eq_eq, inseparable_iff_eq, insert_mem_nhdsWithin_of_subset_insert, instLocallyCompactPairOfWeaklyLocallyCompactSpaceOfR1Space, instR0Space, instR0SpaceForall, instR0SpaceOfT1Space, instR0SpaceProd, instR0SpaceSubtype, instR1SpaceForall, instR1SpaceProd, instR1SpaceSubtype, instT1SpaceCofiniteTopology, instT1SpaceForall, instT1SpaceOfDiscreteTopology, instT1SpaceOfT0SpaceOfR0Space, instT1SpaceProd, isClosedEmbedding_update, isClosedMap_const, isClosedMap_prodMk_left, isClosedMap_prodMk_right, isClosed_inter_singleton, isClosed_setOf_inseparable, isClosed_setOf_specializes, isClosed_singleton, isClosed_singleton_inter, isCompact_closure_singleton, isCompact_isClosed_basis_nhds, isEmbedding_iff_isInducing, isOpen_compl_singleton, isOpen_inter_eq_singleton_of_mem_discrete, isOpen_ne, isOpen_setOf_eventually_nhdsWithin, isOpen_singleton_of_finite_mem_nhds, ker_nhds, minimal_nonempty_closed_eq_singleton, minimal_nonempty_closed_subsingleton, minimal_nonempty_open_eq_singleton, minimal_nonempty_open_subsingleton, nhdsNE_le_cofinite, nhdsSet_inj_iff, nhdsSet_le_iff, nhdsWithin_compl_singleton_le, nhdsWithin_insert_of_ne, nhdsWithin_of_mem_discrete, nhds_eq_nhds_iff, nhds_injective, nhds_inter_eq_singleton_of_mem_discrete, nhds_le_nhdsSet_iff, nhds_le_nhds_iff, pure_le_nhds_iff, r0Space_iff, r1Space_iff_inseparable_or_disjoint_nhds, r1Space_iff_specializes_or_disjoint_nhds, r1_separation, singleton_mem_nhdsWithin_of_mem_discrete, specializes_comm, specializes_eq_eq, specializes_iff_eq, specializes_iff_inseparable, specializes_iff_not_disjoint, strictMono_nhdsSet, subsingleton_closure, t0Space_iff_exists_isOpen_xor'_mem, t0Space_iff_inseparable, t0Space_iff_nhds_injective, t0Space_iff_not_inseparable, t0Space_iff_or_notMem_closure, t0Space_of_injective_of_continuous, t1Space_TFAE, t1Space_antitone, t1Space_iff_continuous_cofinite_of, t1Space_iff_disjoint_nhds_pure, t1Space_iff_disjoint_pure_nhds, t1Space_iff_exists_open, t1Space_iff_specializes_imp_eq, t1Space_iff_t0Space_and_r0Space, t1Space_of_injective_of_continuous, tendsto_const_nhds_iff, tendsto_nhds_unique_inseparable
191
Total197

Bornology

Definitions

NameCategoryTheorems
relativelyCompact πŸ“–CompOp
2 mathmath: relativelyCompact.isBounded_iff, relativelyCompact_eq_inCompact

Theorems

NameKindAssumesProvesValidatesDepends On
relativelyCompact_eq_inCompact πŸ“–mathematicalβ€”relativelyCompact
instR0Space
inCompact
β€”ext
instR0Space
Filter.coclosedCompact_eq_cocompact

Bornology.relativelyCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isBounded_iff πŸ“–mathematicalβ€”Bornology.IsBounded
Bornology.relativelyCompact
IsCompact
closure
β€”Filter.compl_mem_coclosedCompact

CofiniteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of πŸ“–mathematicalβ€”Continuous
CofiniteTopology
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
of
β€”t1Space_iff_continuous_cofinite_of

ContinousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
eq_const_of_mem_closure πŸ“–β€”ContinuousWithinAt
Set
Set.instMembership
closure
β€”β€”ContinuousWithinAt.eq_const_of_mem_closure

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_mulSupport πŸ“–mathematicalContinuousIsOpen
Function.mulSupport
β€”IsOpen.preimage
isOpen_ne
isOpen_support πŸ“–mathematicalContinuousIsOpen
Function.support
β€”IsOpen.preimage
isOpen_ne

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_ne πŸ“–mathematicalContinuousAtFilter.Eventually
nhds
β€”Filter.Tendsto.eventually_ne
tendsto

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
eqOn_const_closure πŸ“–mathematicalContinuousWithinAt
Set.EqOn
closureβ€”eq_const_of_mem_closure
eq_const_of_mem_closure πŸ“–β€”ContinuousWithinAt
Set
Set.instMembership
closure
β€”β€”Set.mem_singleton_iff
closure_singleton
mem_closure
insert' πŸ“–mathematicalContinuousWithinAtSet
Set.instInsert
β€”continuousWithinAt_insert
of_insert πŸ“–β€”ContinuousWithinAt
Set
Set.instInsert
β€”β€”continuousWithinAt_insert

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
diff_finite πŸ“–mathematicalFilter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Dense
Set.instSDiffβ€”Set.Finite.coe_toFinset
diff_finset
diff_finset πŸ“–mathematicalFilter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Dense
Set.instSDiff
SetLike.coe
Finset
Finset.instSetLike
β€”Finset.induction_on
Finset.coe_empty
Set.diff_empty
Finset.coe_insert
Set.union_singleton
Set.diff_diff
diff_singleton
diff_singleton πŸ“–mathematicalDenseSet
Set.instSDiff
Set.instSingletonSet
β€”inter_of_isOpen_right
dense_compl_singleton
isOpen_compl_singleton

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
coclosedCompact_eq_cocompact πŸ“–mathematicalβ€”coclosedCompact
cocompact
β€”le_antisymm
HasBasis.le_basis_iff
hasBasis_coclosedCompact
hasBasis_cocompact
isClosed_closure
IsCompact.closure
Set.compl_subset_compl
subset_closure
cocompact_le_coclosedCompact
coclosedCompact_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
coclosedCompact
cofinite
β€”le_cofinite_iff_compl_singleton_mem
compl_mem_coclosedCompact
isCompact_closure_singleton

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
exists_inter_eq_singleton_of_mem_discrete πŸ“–mathematicalIsDiscrete
Filter.HasBasis
nhds
Set
Set.instMembership
Set.instInter
Set.instSingletonSet
β€”mem_iff
nhdsWithin_hasBasis
singleton_mem_nhdsWithin_of_mem_discrete
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.singleton_subset_iff
mem_of_mem_nhds
mem_of_mem

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_ne πŸ“–mathematicalFilter.Tendsto
nhds
Filter.Eventuallyβ€”eventually
IsOpen.eventually_mem
isOpen_compl_singleton

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopologyβ€”discreteTopology_iff_forall_isClosed
Set.Finite.isClosed
Set.toFinite
Subtype.finite

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed πŸ“–mathematicalβ€”IsClosed
SetLike.coe
Finset
instSetLike
β€”Set.Finite.isClosed
finite_toSet

Function

Theorems

NameKindAssumesProvesValidatesDepends On
update_eventuallyEq_nhdsNE πŸ“–mathematicalβ€”Filter.EventuallyEq
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
update
β€”Filter.EventuallyEq.filter_mono
update_eventuallyEq_cofinite
nhdsNE_le_cofinite

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
t0Space πŸ“–mathematicalβ€”T0Spaceβ€”Topology.IsEmbedding.t0Space
isEmbedding
t1Space πŸ“–mathematicalβ€”T1Spaceβ€”Topology.IsEmbedding.t1Space
isEmbedding

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–β€”Inseparableβ€”β€”T0Space.t0
of_nhds_neBot πŸ“–mathematicalβ€”Inseparableβ€”r1Space_iff_inseparable_or_disjoint_nhds
Filter.NeBot.ne
Disjoint.eq_bot

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
exists_closed_singleton πŸ“–mathematicalSet.NonemptySet
Set.instMembership
IsClosed
Set.instSingletonSet
β€”exists_minimal_nonempty_closed_subset
minimal_nonempty_closed_eq_singleton
Set.mem_singleton

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
binary_compact_cover πŸ“–β€”IsCompact
IsOpen
Set
Set.instHasSubset
Set.instUnion
β€”β€”closure
SeparatedNhds.of_isCompact_isCompact_isClosed
diff
IsClosed.sdiff
isClosed_closure
Set.disjoint_iff_inter_eq_empty
Set.diff_inter_diff
Set.diff_eq_empty
closure_subset_of_isOpen
IsOpen.union
SeparatedNhds.mono
Set.diff_subset_diff_left
subset_closure
Set.diff_subset_comm
Set.diff_inter
Disjoint.inter_eq
Set.diff_empty
closure πŸ“–mathematicalIsCompactclosureβ€”isCompact_of_finite_subcover
elim_finite_subcover
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset_of_isOpen
isOpen_biUnion
closure_eq_biUnion_closure_singleton πŸ“–mathematicalIsCompactclosure
Set.iUnion
Set
Set.instMembership
Set.instSingletonSet
β€”closure_eq_biUnion_inseparable
Set.iUnion_congr_Prop
instR0Space
closure_eq_biUnion_inseparable πŸ“–mathematicalIsCompactclosure
Set.iUnion
Set
Set.instMembership
setOf
Inseparable
β€”Set.ext
mem_closure_iff_exists_inseparable
closure_of_subset πŸ“–mathematicalIsCompact
Set
Set.instHasSubset
closureβ€”of_isClosed_subset
closure
isClosed_closure
closure_mono
closure_subset_of_isOpen πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
closureβ€”closure_eq_biUnion_inseparable
Set.iUnionβ‚‚_subset_iff
Inseparable.mem_open_iff
finite_compact_cover πŸ“–β€”IsCompact
IsOpen
Set
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
β€”β€”Finset.induction
isCompact_empty
Set.empty_subset
Set.iUnion_congr_Prop
Set.iUnion_empty
Set.iUnion_false
binary_compact_cover
isOpen_biUnion
Finset.set_biUnion_insert
eq_or_ne
Function.update_self
Function.update_of_ne
Finset.set_biUnion_insert_update
isCompact_isClosed_basis_nhds πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhds
Filter.HasBasis
IsClosed
β€”Filter.hasBasis_self
exists_mem_nhds_isCompact_mapsTo_of_isCompact_mem_nhds
continuous_id
interior_mem_nhds
Filter.mem_of_superset
subset_closure
closure
isClosed_closure
HasSubset.Subset.trans
Set.instIsTransSubset
closure_subset_of_isOpen
isOpen_interior
interior_subset
mem_closure_iff_exists_inseparable πŸ“–mathematicalIsCompactSet
Set.instMembership
closure
Inseparable
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
disjoint_nhdsSet_right
Disjoint.symm
disjoint_nhds_nhds_iff_not_inseparable
Disjoint.mono_right
principal_le_nhdsSet
Inseparable.mem_closed_iff
isClosed_closure
subset_closure

Ne

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsWithin_compl_singleton πŸ“–mathematicalβ€”nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
β€”IsOpen.nhdsWithin_eq
isOpen_ne
nhdsWithin_diff_singleton πŸ“–mathematicalβ€”nhdsWithin
Set
Set.instSDiff
Set.instSingletonSet
β€”Set.diff_eq
Set.inter_comm
nhdsWithin_inter_of_mem
mem_nhdsWithin_of_mem_nhds
IsOpen.mem_nhds
isOpen_ne

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instT0Space πŸ“–mathematicalT0SpacetopologicalSpaceβ€”Inseparable.eq
Inseparable.map
continuous_apply

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instT0Space πŸ“–mathematicalβ€”T0Space
instTopologicalSpaceProd
β€”Inseparable.eq
Inseparable.map
continuous_fst
continuous_snd

R0Space

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
Filter.ker
nhds
β€”Set.ext
ker_nhds_eq_specializes
specializes_symmetric πŸ“–mathematicalβ€”Symmetric
Specializes
β€”β€”

R1Space

Theorems

NameKindAssumesProvesValidatesDepends On
iInf πŸ“–mathematicalR1SpaceiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sInf
Set.forall_mem_range
induced πŸ“–mathematicalβ€”R1Space
TopologicalSpace.induced
β€”Topology.IsInducing.r1Space
Topology.IsInducing.induced
inf πŸ“–mathematicalβ€”R1Space
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”inf_eq_iInf
iInf
of_continuous_specializes_imp πŸ“–mathematicalContinuous
Specializes
R1Spaceβ€”Filter.Tendsto.disjoint
Continuous.tendsto
specializes_or_disjoint_nhds
sInf πŸ“–mathematicalR1SpaceInfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”nhds_sInf
Disjoint.mono
iInfβ‚‚_le
iInfβ‚‚_mono
specializes_or_disjoint_nhds
Mathlib.Tactic.Push.not_and_eq
specializes_or_disjoint_nhds πŸ“–mathematicalβ€”Specializes
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”β€”

SeparatedNhds

Theorems

NameKindAssumesProvesValidatesDepends On
of_isCompact_isCompact_isClosed πŸ“–mathematicalIsCompact
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”IsCompact.disjoint_nhdsSet_left
IsCompact.disjoint_nhdsSet_right
Inseparable.mem_closed_iff
Set.disjoint_left

SeparationQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
instT0Space πŸ“–mathematicalβ€”T0Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”Quotient.inductionOnβ‚‚'
Topology.IsInducing.inseparable_iff
t1Space_iff πŸ“–mathematicalβ€”T1Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
R0Space
β€”r0Space_iff
List.TFAE.out
t1Space_TFAE
Topology.IsInducing.specializes_iff
specializes_refl
inseparable_iff_specializes_and

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn πŸ“–mathematicalβ€”ContinuousOnβ€”continuousOn_iff_continuous_restrict
continuous_of_discreteTopology
Finite.instDiscreteTopology
Subtype.t1Space
isClosed πŸ“–mathematicalβ€”IsClosedβ€”Set.biUnion_of_singleton
isClosed_biUnion
isClosed_singleton
isCompact_closure πŸ“–mathematicalβ€”IsCompact
closure
β€”Bornology.relativelyCompact.isBounded_iff
isBounded
isDiscrete πŸ“–mathematicalβ€”IsDiscreteβ€”Finite.instDiscreteTopology
Subtype.t1Space
to_subtype

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalSet.Subsingletonclosureβ€”closure_eq
closure_eq πŸ“–mathematicalSet.Subsingletonclosureβ€”IsClosed.closure_eq
isClosed
isClosed πŸ“–mathematicalSet.SubsingletonIsClosedβ€”eq_empty_or_singleton
isClosed_empty
isClosed_singleton

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–β€”Specializesβ€”β€”t1Space_iff_specializes_imp_eq
inseparable πŸ“–mathematicalSpecializesInseparableβ€”specializes_iff_inseparable

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
t0Space πŸ“–mathematicalβ€”T0Space
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.t0Space
Topology.IsEmbedding.subtypeVal
t1Space πŸ“–mathematicalβ€”T1Space
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.t1Space
Topology.IsEmbedding.subtypeVal

T0Space

Theorems

NameKindAssumesProvesValidatesDepends On
of_cover πŸ“–β€”Set
Set.instMembership
T0Space
Set.Elem
instTopologicalSpaceSubtype
β€”β€”CanLift.prf
Subtype.canLift
Inseparable.eq
subtype_inseparable_iff
of_open_cover πŸ“–β€”Set
Set.instMembership
IsOpen
T0Space
Set.Elem
instTopologicalSpaceSubtype
β€”β€”of_cover
Inseparable.mem_open_iff
t0 πŸ“–β€”Inseparableβ€”β€”β€”

T1Space

Theorems

NameKindAssumesProvesValidatesDepends On
t0Space πŸ“–mathematicalβ€”T0Spaceβ€”t1Space_iff_t0Space_and_r0Space
t1 πŸ“–mathematicalβ€”IsClosed
Set
Set.instSingletonSet
β€”β€”

TopologicalSpace.IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instMembership
β€”inseparable_iff_eq
inseparable_iff
exists_mem_of_ne πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisSet
Set.instMembership
β€”isOpen_iff
isOpen_ne
inseparable_iff πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisInseparable
Set
Set.instMembership
β€”inseparable_iff_forall_isOpen
isOpen
Filter.HasBasis.eq_of_same_basis
nhds_hasBasis

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
t0Space πŸ“–mathematicalTopology.IsEmbeddingT0Spaceβ€”t0Space_of_injective_of_continuous
injective
continuous
t1Space πŸ“–mathematicalTopology.IsEmbeddingT1Spaceβ€”t1Space_of_injective_of_continuous
injective
continuous

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–β€”Topology.IsInducingβ€”β€”Inseparable.eq
inseparable_iff
Inseparable.of_eq
isEmbedding πŸ“–mathematicalTopology.IsInducingTopology.IsEmbeddingβ€”injective
r0Space πŸ“–mathematicalTopology.IsInducingR0Spaceβ€”specializes_iff
Specializes.symm
r1Space πŸ“–mathematicalTopology.IsInducingR1Spaceβ€”R1Space.of_continuous_specializes_imp
continuous
specializes_iff

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instT0Space πŸ“–mathematicalβ€”T0Space
topologicalSpace
β€”Topology.IsEmbedding.t0Space
Topology.IsEmbedding.uliftDown
instT1Space πŸ“–mathematicalβ€”T1Space
topologicalSpace
β€”Topology.IsEmbedding.t1Space
Topology.IsEmbedding.uliftDown

WeaklyLocallyCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpaceβ€”LocallyCompactSpace.of_hasBasis
isCompact_isClosed_basis_nhds

(root)

Definitions

NameCategoryTheorems
R0Space πŸ“–CompData
14 mathmath: instR0SpaceOfT1Space, SeparationQuotient.t1Space_iff, t1Space_TFAE, Topology.IsInducing.r0Space, ContinuousMapZero.instR0Space, DomAddAct.instR0Space, instR0SpaceOfPerfectlyNormalSpace, instR0SpaceSubtype, r0Space_iff, instR0SpaceProd, instR0Space, ContinuousMap.instR0Space, t1Space_iff_t0Space_and_r0Space, DomMulAct.instR0Space
R1Space πŸ“–CompData
17 mathmath: instR1SpaceProd, R1Space.of_continuous_specializes_imp, MeasureTheory.FiniteMeasure.instR1Space, Topology.IsInducing.r1Space, r1Space_iff_inseparable_or_disjoint_nhds, R1Space.induced, R1Space.inf, DomAddAct.instR1Space, instR1SpaceSubtype, T2Space.r1Space, r1Space_iff_specializes_or_disjoint_nhds, SeparationQuotient.t2Space_iff, ContinuousMapZero.instR1Space, DomMulAct.instR1Space, ContinuousMap.instR1Space, instR1Space, MeasureTheory.ProbabilityMeasure.R1Space
T0Space πŸ“–CompData
52 mathmath: T35Space.toT0Space, Topology.IsScott.instT0Space, Topology.IsEmbedding.t0Space, t0Space_iff_inseparable, WithLp.instProdT0Space, SpectralSpace.toT0Space, PrimeSpectrum.instT0Space, t0Space_of_injective_of_continuous, SeparationQuotient.instT0Space, t0Space_iff_uniformity, t0Space_iff_nhds_injective, T3Space.toT0Space, t0Space_iff_uniformity', R1Space.t2Space_iff_t0Space, RegularSpace.t3Space_iff_t0Space, Homeomorph.t0Space, CpltSepUniformSpace.isT0, ContinuousMapZero.instT0Space, AlgebraicGeometry.instT0SpaceCarrierCarrierCommRingCat, CpltSepUniformSpace.t0Space, AbstractCompletion.separation, ValuedRing.separated, t1Space_TFAE, CompletableTopField.toT0Space, DomAddAct.instT0Space, Matrix.instT0Space, Prod.instT0Space, OnePoint.instT0Space, MetricSpace.instT0Space, t0Space_iff_exists_isOpen_xor'_mem, TopologicalSpace.MetrizableSpace.toT0Space, t0Space_iff_ker_uniformity, TopologicalSpace.Opens.CompleteCopy.instT0Space, T1Space.t0Space, T6Space.toT0Space, UniformSpace.Completion.t0Space, t0Space_iff_not_inseparable, t35Space_iff, Topology.IsUpper.t0Space, ULift.instT0Space, EMetricSpace.instT0Space, Filter.instT0Space, t0Space_iff_or_notMem_closure, Metric.Snowflaking.instT0Space, MvPowerSeries.WithPiTopology.instT0Space, Subtype.t0Space, PowerSeries.WithPiTopology.instT0Space, DomMulAct.instT0Space, ContinuousMap.instT0Space, t1Space_iff_t0Space_and_r0Space, TopologicalSpace.Closeds.instT0Space, Topology.IsLower.t0Space
T1Space πŸ“–CompData
44 mathmath: t1Space_iff_specializes_imp_eq, WithSeminorms.separating_iff_T1, instT1SpaceCofiniteTopology, MaximalSpectrum.instT1Space, t1Space_iff_disjoint_nhds_pure, IsTopologicalGroup.t1Space, t1Space_iff_exists_open, AddAction.IsPretransitive.t1Space_iff, PrimeSpectrum.t1Space_iff_isField, ContinuousMap.instT1Space, T5Space.toT1Space, IsTopologicalAddGroup.t1Space, WithSeminorms.T1_of_separating, Topology.IsLawson.toT1Space, QuotientAddGroup.t1Space_iff, t1Space_antitone, SeparationQuotient.t1Space_iff, instT1SpaceOfT0SpaceOfR0Space, t1Space_TFAE, ContinuousMapZero.instT1Space, Continuous.homeoOfEquivCompactToT2.t1_counterexample, SeparatingDual.t1Space, Topology.IsEmbedding.t1Space, t1Space_iff_disjoint_pure_nhds, Subtype.t1Space, T2Space.t1Space, t1Space_iff_continuous_cofinite_of, DomMulAct.instT1Space, DomAddAct.instT1Space, t1Space_of_injective_of_continuous, ModelWithCorners.t1Space, ChartedSpace.t1Space, Homeomorph.t1Space, T4Space.toT1Space, QuotientGroup.instT1Space, instT1SpaceOfDiscreteTopology, QuotientAddGroup.instT1Space, OnePoint.instT1Space, t1Space_iff_t0Space_and_r0Space, TotallyDisconnectedSpace.t1Space, MulAction.IsPretransitive.t1Space_iff, instT1SpaceProd, QuotientGroup.t1Space_iff, ULift.instT1Space
specializationOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
biInter_basis_nhds πŸ“–mathematicalFilter.HasBasis
nhds
Set.iInter
Set
Set.instSingletonSet
β€”Filter.HasBasis.ker
ker_nhds
closure_singleton πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
β€”IsClosed.closure_eq
isClosed_singleton
compl_singleton_mem_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Compl.compl
Set.instCompl
Set.instSingletonSet
β€”compl_singleton_mem_nhds_iff
compl_singleton_mem_nhdsSet_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhdsSet
Compl.compl
Set.instCompl
Set.instSingletonSet
Set.instMembership
β€”IsOpen.mem_nhdsSet
isOpen_compl_singleton
Set.subset_compl_singleton_iff
compl_singleton_mem_nhds_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Compl.compl
Set.instCompl
Set.instSingletonSet
β€”IsOpen.mem_nhds_iff
isOpen_compl_singleton
continuousAt_of_tendsto_nhds πŸ“–mathematicalFilter.Tendsto
nhds
ContinuousAtβ€”ContinuousAt.eq_1
eq_of_tendsto_nhds
continuousAt_update_of_ne πŸ“–mathematicalβ€”ContinuousAt
Function.update
β€”continuousWithinAt_update_of_ne
continuousOn_update_iff πŸ“–mathematicalβ€”ContinuousOn
Function.update
Set
Set.instSDiff
Set.instSingletonSet
Filter.Tendsto
nhdsWithin
nhds
β€”ContinuousOn.eq_1
and_forall_ne
ContinuousWithinAt.mono
continuousWithinAt_update_of_ne
Set.diff_subset
ContinuousWithinAt.mono_of_mem_nhdsWithin
inter_mem_nhdsWithin
IsOpen.mem_nhds
isOpen_ne
continuousWithinAt_update_same
continuousWithinAt_congr_set' πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
ContinuousWithinAtβ€”continuousWithinAt_insert_self
continuousWithinAt_congr_set
eventuallyEq_insert
continuousWithinAt_diff_singleton πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instSDiff
Set.instSingletonSet
β€”continuousWithinAt_insert
Set.insert_diff_singleton
continuousWithinAt_insert πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instInsert
β€”eq_or_ne
continuousWithinAt_insert_self
nhdsWithin_insert_of_ne
continuousWithinAt_update_of_ne πŸ“–mathematicalβ€”ContinuousWithinAt
Function.update
β€”Filter.EventuallyEq.congr_continuousWithinAt
mem_nhdsWithin_of_mem_nhds
Filter.mem_of_superset
IsOpen.mem_nhds
isOpen_ne
Function.update_of_ne
disjoint_nhdsWithin_of_mem_discrete πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
Filter
Filter.instMembership
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”nhds_inter_eq_singleton_of_mem_discrete
inter_mem_nhdsWithin
Set.disjoint_iff_inter_eq_empty
Set.inter_assoc
Set.compl_inter_self
disjoint_nhds_nhds_iff_not_inseparable πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Inseparable
β€”disjoint_nhds_nhds_iff_not_specializes
specializes_iff_inseparable
instR0Space
disjoint_nhds_nhds_iff_not_specializes πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Specializes
β€”Specializes.not_disjoint
R1Space.specializes_or_disjoint_nhds
disjoint_nhds_pure πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Filter.instPure
β€”t1Space_iff_disjoint_nhds_pure
disjoint_pure_nhds πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.instPure
nhds
β€”t1Space_iff_disjoint_pure_nhds
eq_of_tendsto_nhds πŸ“–β€”Filter.Tendsto
nhds
β€”β€”by_contra
compl_singleton_mem_nhds
Filter.Tendsto.comp
Filter.tendsto_id'
pure_le_nhds
eventuallyEq_insert πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
Set.instInsert
β€”Set.compl_union_self
nhdsWithin_union
nhdsWithin_singleton
Set.union_singleton
Filter.mp_mem
nhdsWithin_compl_singleton_le
Filter.univ_mem'
eventually_ne_nhds πŸ“–mathematicalβ€”Filter.Eventually
nhds
β€”IsOpen.eventually_mem
isOpen_ne
eventually_ne_nhdsWithin πŸ“–mathematicalβ€”Filter.Eventually
nhdsWithin
β€”Filter.Eventually.filter_mono
nhdsWithin_le_nhds
eventually_ne_nhds
eventually_nhdsNE_eventually_nhds_iff πŸ“–mathematicalβ€”Filter.Eventually
nhds
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”eventually_nhdsWithin_eventually_nhds_iff_of_isOpen
isOpen_ne
eventually_nhdsWithin_eventually_nhds_iff_of_isOpen πŸ“–mathematicalIsOpenFilter.Eventually
nhds
nhdsWithin
β€”eventually_eventually_nhdsWithin
Filter.mp_mem
Filter.univ_mem'
eventually_nhdsWithin_of_eventually_nhds
eventually_nhdsWithin_of_forall
IsOpen.nhdsWithin_eq
exists_isCompact_superset_iff πŸ“–mathematicalβ€”IsCompact
Set
Set.instHasSubset
closure
β€”IsCompact.closure_of_subset
subset_closure
exists_isOpen_mem_isCompact_closure πŸ“–mathematicalβ€”IsOpen
Set
Set.instMembership
IsCompact
closure
β€”exists_isOpen_superset_and_isCompact_closure
isCompact_singleton
exists_isOpen_singleton_of_isOpen_finite πŸ“–mathematicalSet.Nonempty
IsOpen
Set
Set.instMembership
Set.instSingletonSet
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
em
minimal_nonempty_open_eq_singleton
of_not_not
Set.Finite.subset
Finset.finite_toSet
ssubset_iff_subset_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
exists_isOpen_superset_and_isCompact_closure πŸ“–mathematicalIsCompactIsOpen
Set
Set.instHasSubset
closure
β€”exists_compact_superset
isOpen_interior
IsCompact.closure_of_subset
interior_subset
exists_isOpen_xor'_mem πŸ“–mathematicalβ€”IsOpen
Xor'
Set
Set.instMembership
β€”t0Space_iff_exists_isOpen_xor'_mem
exists_mem_nhds_isCompact_isClosed πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
IsCompact
IsClosed
β€”Filter.HasBasis.ex_mem
isCompact_isClosed_basis_nhds
exists_mem_nhds_isCompact_mapsTo_of_isCompact_mem_nhds πŸ“–mathematicalContinuous
Set
Filter
Filter.instMembership
nhds
IsCompact
Set.MapsToβ€”IsCompact.diff
IsCompact.image
isOpen_interior
nhdsSet_singleton
IsCompact.disjoint_nhdsSet_right
Inseparable.mem_open_iff
mem_interior_iff_mem_nhds
Filter.diff_mem
Filter.mp_mem
Continuous.continuousAt
IsOpen.mem_nhds
Filter.univ_mem'
Set.disjoint_left
IsOpen.preimage
Set.mem_image_of_mem
Set.notMem_subset
interior_subset
exists_open_singleton_of_finite πŸ“–mathematicalβ€”IsOpen
Set
Set.instSingletonSet
β€”exists_isOpen_singleton_of_isOpen_finite
Set.toFinite
Subtype.finite
Set.univ_nonempty
isOpen_univ
infinite_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Infiniteβ€”Filter.NeBot.ne'
isOpen_singleton_iff_punctured_nhds
isOpen_singleton_of_finite_mem_nhds
injective_nhdsSet πŸ“–mathematicalβ€”Set
Filter
nhdsSet
β€”nhdsSet_inj_iff
inseparable_eq_eq πŸ“–mathematicalβ€”Inseparableβ€”inseparable_iff_eq
inseparable_iff_eq πŸ“–mathematicalβ€”Inseparableβ€”nhds_injective
insert_mem_nhdsWithin_of_subset_insert πŸ“–mathematicalSet
Set.instHasSubset
Set.instInsert
Filter
Filter.instMembership
nhdsWithin
β€”eq_or_ne
Filter.mem_of_superset
self_mem_nhdsWithin
nhdsWithin_mono
nhdsWithin_insert_of_ne
Set.subset_insert
instLocallyCompactPairOfWeaklyLocallyCompactSpaceOfR1Space πŸ“–mathematicalβ€”LocallyCompactPairβ€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
exists_mem_nhds_isCompact_mapsTo_of_isCompact_mem_nhds
instR0Space πŸ“–mathematicalβ€”R0Spaceβ€”R1Space.specializes_or_disjoint_nhds
Specializes.not_disjoint
Disjoint.symm
instR0SpaceForall πŸ“–mathematicalR0SpacePi.topologicalSpaceβ€”specializes_pi
Specializes.symm
instR0SpaceOfT1Space πŸ“–mathematicalβ€”R0Spaceβ€”t1Space_iff_t0Space_and_r0Space
instR0SpaceProd πŸ“–mathematicalβ€”R0Space
instTopologicalSpaceProd
β€”Specializes.prod
Specializes.symm
Specializes.fst
Specializes.snd
instR0SpaceSubtype πŸ“–mathematicalβ€”R0Space
instTopologicalSpaceSubtype
β€”Topology.IsInducing.r0Space
Topology.IsInducing.subtypeVal
instR1SpaceForall πŸ“–mathematicalR1SpacePi.topologicalSpaceβ€”R1Space.iInf
R1Space.induced
instR1SpaceProd πŸ“–mathematicalβ€”R1Space
instTopologicalSpaceProd
β€”R1Space.inf
R1Space.induced
instR1SpaceSubtype πŸ“–mathematicalβ€”R1Space
instTopologicalSpaceSubtype
β€”R1Space.induced
instT1SpaceCofiniteTopology πŸ“–mathematicalβ€”T1Space
CofiniteTopology
CofiniteTopology.instTopologicalSpace
β€”t1Space_iff_continuous_cofinite_of
continuous_id
instT1SpaceForall πŸ“–mathematicalT1SpacePi.topologicalSpaceβ€”isClosed_set_pi
isClosed_singleton
Set.univ_pi_singleton
instT1SpaceOfDiscreteTopology πŸ“–mathematicalβ€”T1Spaceβ€”isClosed_discrete
instT1SpaceOfT0SpaceOfR0Space πŸ“–mathematicalβ€”T1Spaceβ€”t1Space_iff_t0Space_and_r0Space
instT1SpaceProd πŸ“–mathematicalβ€”T1Space
instTopologicalSpaceProd
β€”IsClosed.prod
isClosed_singleton
Set.singleton_prod_singleton
isClosedEmbedding_update πŸ“–mathematicalT1SpaceTopology.IsClosedEmbedding
Pi.topologicalSpace
Function.update
β€”Topology.IsClosedEmbedding.of_continuous_injective_isClosedMap
Continuous.update
continuous_const
continuous_id
Function.update_injective
Set.update_image
isClosed_set_pi
isClosedMap_const πŸ“–mathematicalβ€”IsClosedMapβ€”IsClosedMap.of_nonempty
Set.image_congr
Set.Nonempty.image_const
isClosedMap_prodMk_left πŸ“–mathematicalβ€”IsClosedMap
instTopologicalSpaceProd
β€”IsClosed.prod
isClosed_singleton
Set.singleton_prod
isClosedMap_prodMk_right πŸ“–mathematicalβ€”IsClosedMap
instTopologicalSpaceProd
β€”IsClosed.prod
isClosed_singleton
Set.prod_singleton
isClosed_inter_singleton πŸ“–mathematicalβ€”IsClosed
Set
Set.instInter
Set.instSingletonSet
β€”Set.Subsingleton.isClosed
Set.Subsingleton.inter_singleton
isClosed_setOf_inseparable πŸ“–mathematicalβ€”IsClosed
instTopologicalSpaceProd
setOf
Inseparable
β€”instR0Space
isClosed_setOf_specializes πŸ“–mathematicalβ€”IsClosed
instTopologicalSpaceProd
setOf
Specializes
β€”β€”
isClosed_singleton πŸ“–mathematicalβ€”IsClosed
Set
Set.instSingletonSet
β€”T1Space.t1
isClosed_singleton_inter πŸ“–mathematicalβ€”IsClosed
Set
Set.instInter
Set.instSingletonSet
β€”Set.Subsingleton.isClosed
Set.Subsingleton.singleton_inter
isCompact_closure_singleton πŸ“–mathematicalβ€”IsCompact
closure
Set
Set.instSingletonSet
β€”isCompact_of_finite_subcover
Set.mem_iUnion
subset_closure
Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
Specializes.mem_open
specializes_comm
specializes_iff_mem_closure
isCompact_isClosed_basis_nhds πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsCompact
IsClosed
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
IsCompact.isCompact_isClosed_basis_nhds
isEmbedding_iff_isInducing πŸ“–mathematicalβ€”Topology.IsEmbedding
Topology.IsInducing
β€”Topology.IsEmbedding.isInducing
Topology.IsInducing.isEmbedding
isOpen_compl_singleton πŸ“–mathematicalβ€”IsOpen
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”IsClosed.isOpen_compl
isClosed_singleton
isOpen_inter_eq_singleton_of_mem_discrete πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
IsOpen
Set.instInter
Set.instSingletonSet
β€”nhds_inter_eq_singleton_of_mem_discrete
mem_nhds_iff
isOpen_ne πŸ“–mathematicalβ€”IsOpen
setOf
β€”isOpen_compl_singleton
isOpen_setOf_eventually_nhdsWithin πŸ“–mathematicalβ€”IsOpen
setOf
Filter.Eventually
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”isOpen_iff_mem_nhds
Filter.mp_mem
eventually_nhds_nhdsWithin
Filter.univ_mem'
eq_or_ne
Filter.Eventually.filter_mono
nhdsWithin_le_nhds
Ne.nhdsWithin_compl_singleton
isOpen_singleton_of_finite_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
IsOpen
Set.instSingletonSet
β€”mem_of_mem_nhds
Set.Finite.isClosed
Set.Finite.subset
Set.diff_subset
IsOpen.mem_nhds
IsClosed.isOpen_compl
Set.diff_diff_cancel_left
Filter.inter_mem
subset_interior_iff_isOpen
Set.singleton_subset_iff
mem_interior_iff_mem_nhds
ker_nhds πŸ“–mathematicalβ€”Filter.ker
nhds
Set
Set.instSingletonSet
β€”ker_nhds_eq_specializes
specializes_eq_eq
minimal_nonempty_closed_eq_singleton πŸ“–mathematicalSet.NonemptySet
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
minimal_nonempty_closed_subsingleton
minimal_nonempty_closed_subsingleton πŸ“–mathematicalβ€”Set.Subsingletonβ€”of_not_not
exists_isOpen_xor'_mem
Set.diff_subset
IsClosed.sdiff
Eq.subset
Set.instReflSubset
minimal_nonempty_open_eq_singleton πŸ“–mathematicalIsOpen
Set.Nonempty
Set
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
minimal_nonempty_open_subsingleton
minimal_nonempty_open_subsingleton πŸ“–mathematicalIsOpenSet.Subsingletonβ€”of_not_not
exists_isOpen_xor'_mem
Set.inter_subset_left
IsOpen.inter
Eq.subset
Set.instReflSubset
nhdsNE_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.cofinite
β€”Filter.le_cofinite_iff_compl_singleton_mem
eq_or_ne
self_mem_nhdsWithin
eventually_ne_nhdsWithin
nhdsSet_inj_iff πŸ“–mathematicalβ€”nhdsSetβ€”nhdsSet_le_iff
nhdsSet_le_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
Set
Set.instHasSubset
β€”monotone_nhdsSet
nhdsWithin_compl_singleton_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”eq_or_ne
Eq.le
Ne.nhdsWithin_compl_singleton
nhdsWithin_le_nhds
nhdsWithin_insert_of_ne πŸ“–mathematicalβ€”nhdsWithin
Set
Set.instInsert
β€”le_antisymm
Filter.le_def
mem_nhdsWithin
IsOpen.sdiff
isClosed_singleton
Set.inter_insert_of_notMem
Set.notMem_diff_of_mem
Set.mem_singleton
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_inter
Set.diff_subset
Set.Subset.rfl
nhdsWithin_mono
Set.subset_insert
nhdsWithin_of_mem_discrete πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
nhdsWithin
Filter
Filter.instPure
β€”LE.le.antisymm
Filter.le_pure_iff
singleton_mem_nhdsWithin_of_mem_discrete
pure_le_nhdsWithin
nhds_eq_nhds_iff πŸ“–mathematicalβ€”nhdsβ€”nhds_injective
nhds_injective πŸ“–mathematicalβ€”Filter
nhds
β€”t0Space_iff_nhds_injective
nhds_inter_eq_singleton_of_mem_discrete πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
Filter
Filter.instMembership
nhds
Set.instInter
Set.instSingletonSet
β€”Filter.HasBasis.exists_inter_eq_singleton_of_mem_discrete
Filter.basis_sets
nhds_le_nhdsSet_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
nhdsSet
Set
Set.instMembership
β€”nhdsSet_singleton
nhdsSet_le_iff
Set.singleton_subset_iff
nhds_le_nhds_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
β€”specializes_iff_eq
pure_le_nhds_iff πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
β€”specializes_iff_pure
specializes_iff_eq
r0Space_iff πŸ“–mathematicalβ€”R0Space
Symmetric
Specializes
β€”β€”
r1Space_iff_inseparable_or_disjoint_nhds πŸ“–mathematicalβ€”R1Space
Inseparable
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”Specializes.inseparable
instR0Space
R1Space.specializes_or_disjoint_nhds
Inseparable.specializes
r1Space_iff_specializes_or_disjoint_nhds πŸ“–mathematicalβ€”R1Space
Specializes
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”β€”
r1_separation πŸ“–mathematicalInseparableIsOpen
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Filter.HasBasis.disjoint_iff
nhds_basis_opens
disjoint_nhds_nhds_iff_not_inseparable
singleton_mem_nhdsWithin_of_mem_discrete πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
Filter
Filter.instMembership
nhdsWithin
Set.instSingletonSet
β€”nhds_discrete
isDiscrete_iff_discreteTopology
nhdsWithin_eq_map_subtype_coe
Set.image_singleton
Filter.image_mem_map
specializes_comm πŸ“–mathematicalβ€”Specializesβ€”Specializes.symm
specializes_eq_eq πŸ“–mathematicalβ€”Specializesβ€”specializes_iff_eq
specializes_iff_eq πŸ“–mathematicalβ€”Specializesβ€”Specializes.eq
specializes_rfl
specializes_iff_inseparable πŸ“–mathematicalβ€”Specializes
Inseparable
β€”Specializes.antisymm
Specializes.symm
Inseparable.specializes
specializes_iff_not_disjoint πŸ“–mathematicalβ€”Specializes
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”Iff.not_left
disjoint_nhds_nhds_iff_not_specializes
strictMono_nhdsSet πŸ“–mathematicalβ€”StrictMono
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.instPartialOrder
nhdsSet
β€”Monotone.strictMono_of_injective
monotone_nhdsSet
injective_nhdsSet
subsingleton_closure πŸ“–mathematicalβ€”Set.Subsingleton
closure
β€”Set.Subsingleton.anti
subset_closure
Set.Subsingleton.closure
t0Space_iff_exists_isOpen_xor'_mem πŸ“–mathematicalβ€”T0Space
Pairwise
Set
IsOpen
Xor'
Set.instMembership
β€”β€”
t0Space_iff_inseparable πŸ“–mathematicalβ€”T0Spaceβ€”β€”
t0Space_iff_nhds_injective πŸ“–mathematicalβ€”T0Space
Filter
nhds
β€”t0Space_iff_inseparable
t0Space_iff_not_inseparable πŸ“–mathematicalβ€”T0Space
Pairwise
Inseparable
β€”β€”
t0Space_iff_or_notMem_closure πŸ“–mathematicalβ€”T0Space
Pairwise
Set
Set.instMembership
closure
Set.instSingletonSet
β€”β€”
t0Space_of_injective_of_continuous πŸ“–mathematicalContinuousT0Spaceβ€”Inseparable.eq
Inseparable.map
t1Space_TFAE πŸ“–mathematicalβ€”List.TFAE
T1Space
Continuous
CofiniteTopology
CofiniteTopology.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CofiniteTopology.of
T0Space
R0Space
β€”T1Space.t1
forall_swap
Filter.HasBasis.mem_iff
nhds_basis_opens
isOpen_empty
IsClosed.isOpen_compl
Set.Finite.isClosed
compl_compl
IsClosed.preimage
CofiniteTopology.isClosed_iff
Set.finite_singleton
Inseparable.specializes
specializes_of_eq
Inseparable.eq
Specializes.antisymm
Specializes.symm
List.tfae_of_cycle
t1Space_antitone πŸ“–mathematicalβ€”Antitone
TopologicalSpace
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Prop.partialOrder
T1Space
β€”IsClosed.mono
T1Space.t1
t1Space_iff_continuous_cofinite_of πŸ“–mathematicalβ€”T1Space
Continuous
CofiniteTopology
CofiniteTopology.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CofiniteTopology.of
β€”List.TFAE.out
t1Space_TFAE
t1Space_iff_disjoint_nhds_pure πŸ“–mathematicalβ€”T1Space
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Filter.instPure
β€”List.TFAE.out
t1Space_TFAE
t1Space_iff_disjoint_pure_nhds πŸ“–mathematicalβ€”T1Space
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.instPure
nhds
β€”List.TFAE.out
t1Space_TFAE
t1Space_iff_exists_open πŸ“–mathematicalβ€”T1Space
Pairwise
Set
IsOpen
Set.instMembership
β€”List.TFAE.out
t1Space_TFAE
t1Space_iff_specializes_imp_eq πŸ“–mathematicalβ€”T1Spaceβ€”List.TFAE.out
t1Space_TFAE
t1Space_iff_t0Space_and_r0Space πŸ“–mathematicalβ€”T1Space
T0Space
R0Space
β€”List.TFAE.out
t1Space_TFAE
t1Space_of_injective_of_continuous πŸ“–mathematicalContinuousT1Spaceβ€”t1Space_iff_specializes_imp_eq
Specializes.eq
Specializes.map
tendsto_const_nhds_iff πŸ“–mathematicalβ€”Filter.Tendsto
nhds
β€”Filter.map_const
tendsto_nhds_unique_inseparable πŸ“–mathematicalFilter.Tendsto
nhds
Inseparableβ€”Inseparable.of_nhds_neBot
Filter.neBot_of_le
Filter.map_neBot
le_inf

---

← Back to Index