Documentation Verification Report

CompletelyRegular

πŸ“ Source: Mathlib/Topology/Separation/CompletelyRegular.lean

Statistics

MetricCount
DefinitionsCompletelyRegularSpace, T35Space
2
Theoremscompletely_regular, completely_regular_isOpen, instRegularSpace, isTopologicalBasis_clopens_of_cardinalMk_lt_continuum, instCompletelyRegularSpace, instT3space, toCompletelyRegularSpace, toT0Space, instT35Space, t35Space, completelyRegularSpace, completelyRegularSpace_iInf, completelyRegularSpace_iff, completelyRegularSpace_iff_isInducing_stoneCechUnit, completelyRegularSpace_iff_isOpen, completelyRegularSpace_induced, completelyRegularSpace_inf, injective_stoneCechUnit_of_t35Space, instCompletelyRegularSpaceForall, instCompletelyRegularSpaceProd, instCompletelyRegularSpaceSubtype, instT35SpaceForall, instT35SpaceProd, instT35SpaceSubtype, isDenseEmbedding_stoneCechUnit, isDenseInducing_stoneCechUnit, isEmbedding_stoneCechUnit, isInducing_stoneCechUnit, separatesPoints_continuous_of_t35Space, separatesPoints_continuous_of_t35Space_Icc, t35Space_iff, t35Space_iff_isEmbedding_stoneCechUnit
32
Total34

CompletelyRegularSpace

Theorems

NameKindAssumesProvesValidatesDepends On
completely_regular πŸ“–mathematicalSet
Set.instMembership
Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.EqOn
Pi.instOne
Set.Icc.instOne
β€”β€”
completely_regular_isOpen πŸ“–mathematicalIsOpen
Set
Set.instMembership
Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.EqOn
Pi.instOne
Set.Icc.instOne
Compl.compl
Set.instCompl
β€”Real.instIsOrderedRing
completelyRegularSpace_iff_isOpen
instRegularSpace πŸ“–mathematicalβ€”RegularSpaceβ€”regularSpace_iff
Real.instIsOrderedRing
completely_regular
Filter.disjoint_of_map
Disjoint.mono
Continuous.tendsto_nhdsSet_nhds
Continuous.continuousAt
disjoint_nhds_nhds
instT2SpaceSubtype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
zero_ne_one
NeZero.one
unitInterval.instNontrivialElemReal
isTopologicalBasis_clopens_of_cardinalMk_lt_continuum πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.continuum
TopologicalSpace.IsTopologicalBasis
setOf
Set
IsClopen
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
IsClopen.isOpen
Real.instIsOrderedRing
Cardinal.lift_uzero
Cardinal.lift_continuum
LE.le.trans_lt
Cardinal.mk_range_le_lift
Cardinal.lift_strictMono
unitInterval.eq_1
Cardinal.mk_Icc_real
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Cardinal.lift_lt
Set.ext
IsClosed.preimage
isClosed_Iic
instClosedIicTopology
Subtype.instOrderClosedTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
IsOpen.preimage
isOpen_Iio
instClosedIciTopology
Set.preimage_subset_iff
Mathlib.Tactic.Contrapose.contrapose₁
unitInterval.le_one'
completely_regular_isOpen

NormalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instCompletelyRegularSpace πŸ“–mathematicalβ€”CompletelyRegularSpaceβ€”Real.instIsOrderedRing
completelyRegularSpace_iff
isClosed_closure
Set.disjoint_iff
Specializes.mem_closed
Specializes.symm
specializes_iff_mem_closure
exists_continuous_zero_one_of_isClosed
subset_closure
Set.mem_singleton

T35Space

Theorems

NameKindAssumesProvesValidatesDepends On
instT3space πŸ“–mathematicalβ€”T3Spaceβ€”toT0Space
CompletelyRegularSpace.instRegularSpace
toCompletelyRegularSpace
toCompletelyRegularSpace πŸ“–mathematicalβ€”CompletelyRegularSpaceβ€”β€”
toT0Space πŸ“–mathematicalβ€”T0Spaceβ€”β€”

T4Space

Theorems

NameKindAssumesProvesValidatesDepends On
instT35Space πŸ“–mathematicalβ€”T35Spaceβ€”T3Space.toT0Space
t3Space
NormalSpace.instCompletelyRegularSpace
toNormalSpace
instR0Space
instR1Space
T3Space.toRegularSpace

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
t35Space πŸ“–mathematicalTopology.IsEmbeddingT35Spaceβ€”t0Space
T35Space.toT0Space
Topology.IsInducing.completelyRegularSpace
T35Space.toCompletelyRegularSpace
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
completelyRegularSpace πŸ“–mathematicalTopology.IsInducingCompletelyRegularSpaceβ€”Real.instIsOrderedRing
isClosed_iff
CompletelyRegularSpace.completely_regular
Set.mem_preimage
Continuous.comp
continuous
Set.EqOn.comp_right
Set.mapsTo_preimage

(root)

Definitions

NameCategoryTheorems
CompletelyRegularSpace πŸ“–CompData
14 mathmath: completelyRegularSpace_iff_isOpen, UniformSpace.toCompletelyRegularSpace, instCompletelyRegularSpaceSubtype, Topology.IsInducing.completelyRegularSpace, T35Space.toCompletelyRegularSpace, instCompletelyRegularSpaceProd, NormalSpace.instCompletelyRegularSpace, completelyRegularSpace_induced, CompletelyRegularSpace.of_exists_uniformSpace, completelyRegularSpace_inf, t35Space_iff, completelyRegularSpace_iff_isInducing_stoneCechUnit, completelyRegularSpace_iff, completelyRegularSpace_iff_exists_uniformSpace
T35Space πŸ“–CompData
6 mathmath: Topology.IsEmbedding.t35Space, t35Space_iff_isEmbedding_stoneCechUnit, instT35SpaceSubtype, t35Space_iff, instT35SpaceProd, T4Space.instT35Space

Theorems

NameKindAssumesProvesValidatesDepends On
completelyRegularSpace_iInf πŸ“–mathematicalCompletelyRegularSpaceiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”Real.instIsOrderedRing
completelyRegularSpace_iff_isOpen
nhds_iInf
IsOpen.mem_nhds_iff
CompletelyRegularSpace.completely_regular_isOpen
ZeroLEOneClass.factZeroLeOne
Real.instZeroLEOneClass
Continuous.finset_sup
TopologicalLattice.toContinuousSup
LinearOrder.topologicalLattice
Subtype.instOrderClosedTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_iInf_dom
Finset.sup_apply
Set.compl_iInter
unitInterval.instNontrivialElemReal
completelyRegularSpace_iff πŸ“–mathematicalβ€”CompletelyRegularSpace
Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.EqOn
Pi.instOne
Set.Icc.instOne
β€”Real.instIsOrderedRing
completelyRegularSpace_iff_isInducing_stoneCechUnit πŸ“–mathematicalβ€”CompletelyRegularSpace
Topology.IsInducing
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”isInducing_stoneCechUnit
Topology.IsInducing.completelyRegularSpace
NormalSpace.instCompletelyRegularSpace
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
instCompactSpaceStoneCech
T2Space.r1Space
instT2SpaceStoneCech
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
instR0Space
completelyRegularSpace_iff_isOpen πŸ“–mathematicalβ€”CompletelyRegularSpace
Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.EqOn
Pi.instOne
Set.Icc.instOne
Compl.compl
Set.instCompl
β€”Real.instIsOrderedRing
Function.Surjective.forall
compl_surjective
completelyRegularSpace_induced πŸ“–mathematicalβ€”CompletelyRegularSpace
TopologicalSpace.induced
β€”Topology.IsInducing.completelyRegularSpace
Topology.IsInducing.induced
completelyRegularSpace_inf πŸ“–mathematicalβ€”CompletelyRegularSpace
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”inf_eq_iInf
completelyRegularSpace_iInf
injective_stoneCechUnit_of_t35Space πŸ“–mathematicalβ€”StoneCech
stoneCechUnit
β€”Mathlib.Tactic.Contrapose.contrapose₁
separatesPoints_continuous_of_t35Space_Icc
eq_if_stoneCechUnit_eq
instT2SpaceSubtype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
instCompletelyRegularSpaceForall πŸ“–mathematicalCompletelyRegularSpacePi.topologicalSpaceβ€”completelyRegularSpace_iInf
completelyRegularSpace_induced
instCompletelyRegularSpaceProd πŸ“–mathematicalβ€”CompletelyRegularSpace
instTopologicalSpaceProd
β€”completelyRegularSpace_inf
completelyRegularSpace_induced
instCompletelyRegularSpaceSubtype πŸ“–mathematicalβ€”CompletelyRegularSpace
instTopologicalSpaceSubtype
β€”Topology.IsInducing.completelyRegularSpace
Topology.IsInducing.subtypeVal
instT35SpaceForall πŸ“–mathematicalT35SpacePi.topologicalSpaceβ€”Pi.instT0Space
T35Space.toT0Space
instCompletelyRegularSpaceForall
T35Space.toCompletelyRegularSpace
instT35SpaceProd πŸ“–mathematicalβ€”T35Space
instTopologicalSpaceProd
β€”Prod.instT0Space
T35Space.toT0Space
instCompletelyRegularSpaceProd
T35Space.toCompletelyRegularSpace
instT35SpaceSubtype πŸ“–mathematicalβ€”T35Space
instTopologicalSpaceSubtype
β€”Subtype.t0Space
T35Space.toT0Space
instCompletelyRegularSpaceSubtype
T35Space.toCompletelyRegularSpace
isDenseEmbedding_stoneCechUnit πŸ“–mathematicalβ€”IsDenseEmbedding
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”isDenseInducing_stoneCechUnit
T35Space.toCompletelyRegularSpace
injective_stoneCechUnit_of_t35Space
isDenseInducing_stoneCechUnit πŸ“–mathematicalβ€”IsDenseInducing
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”isInducing_stoneCechUnit
denseRange_stoneCechUnit
isEmbedding_stoneCechUnit πŸ“–mathematicalβ€”Topology.IsEmbedding
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”isInducing_stoneCechUnit
T35Space.toCompletelyRegularSpace
injective_stoneCechUnit_of_t35Space
isInducing_stoneCechUnit πŸ“–mathematicalβ€”Topology.IsInducing
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”Topology.isInducing_iff_nhds
le_antisymm
Filter.map_le_iff_le_comap
Continuous.continuousAt
continuous_stoneCechUnit
Filter.HasBasis.mem_iff
Filter.HasBasis.comap
nhds_basis_opens
Real.instIsOrderedRing
CompletelyRegularSpace.completely_regular_isOpen
instT2SpaceSubtype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Set.mem_preimage
stoneCechExtend_stoneCechUnit
Set.mem_compl_iff
Set.mem_singleton_iff
NeZero.one
unitInterval.instNontrivialElemReal
IsOpen.preimage
continuous_stoneCechExtend
isOpen_compl_singleton
Subtype.t1Space
T5Space.toT1Space
OrderTopology.t5Space
Set.preimage_comp
stoneCechExtend_extends
Set.preimage_compl
Set.compl_subset_comm
separatesPoints_continuous_of_t35Space πŸ“–mathematicalβ€”Set.SeparatesPoints
Real
setOf
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Real.instIsOrderedRing
CompletelyRegularSpace.completely_regular
T35Space.toCompletelyRegularSpace
isClosed_singleton
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
T35Space.instT3space
Continuous.comp
continuous_subtype_val
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
separatesPoints_continuous_of_t35Space_Icc πŸ“–mathematicalβ€”Set.SeparatesPoints
Set.Elem
Real
unitInterval
setOf
Continuous
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Real.instIsOrderedRing
CompletelyRegularSpace.completely_regular
T35Space.toCompletelyRegularSpace
isClosed_singleton
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
T35Space.instT3space
NeZero.one
unitInterval.instNontrivialElemReal
t35Space_iff πŸ“–mathematicalβ€”T35Space
T0Space
CompletelyRegularSpace
β€”β€”
t35Space_iff_isEmbedding_stoneCechUnit πŸ“–mathematicalβ€”T35Space
Topology.IsEmbedding
StoneCech
instTopologicalSpaceStoneCech
stoneCechUnit
β€”isEmbedding_stoneCechUnit
Topology.IsEmbedding.t35Space
T4Space.instT35Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
instT2SpaceStoneCech
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
instCompactSpaceStoneCech
T2Space.r1Space
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact

---

← Back to Index