Documentation Verification Report

DisjointCover

πŸ“ Source: Mathlib/Topology/Separation/DisjointCover.lean

Statistics

MetricCount
Definitions0
Theoremsexists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, exists_finite_approximation_of_mem_nhds_diagonal, exists_finite_sum_const_indicator_approximation_of_mem_nhds_diagonal, exists_finite_sum_const_mulIndicator_approximation_of_mem_nhds_diagonal, exists_finite_clopen_cover, exists_finite_nonempty_disjoint_clopen_cover, exists_finite_open_cover_prod_subset_of_mem_nhds_diagonal_of_compact, exists_open_prod_subset_of_mem_nhds_diagonal
8
Total8

ContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
Set.instMembership
DFunLike.coe
ContinuousMap
instFunLike
Set.instHasSubset
Set.univ
Set.iUnion
SetLike.coe
TopologicalSpace.Clopens
TopologicalSpace.Clopens.instSetLike
Pairwise
Function.onFun
Disjoint
TopologicalSpace.Clopens.instPartialOrder
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
TopologicalSpace.Clopens.instBooleanAlgebra
β€”mem_nhdsSet_iff_forall
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
ContinuousMapClass.map_continuous
instContinuousMapClass
exists_finite_approximation_of_mem_nhds_diagonal πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
Continuous
instTopologicalSpaceFin
Set.instMembership
DFunLike.coe
ContinuousMap
instFunLike
β€”exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal
Set.mem_iUnion
Set.mem_univ
Pairwise.eq
continuous_discrete_rng
instDiscreteTopologyFin
Set.ext
TopologicalSpace.Clopens.isOpen
exists_finite_sum_const_indicator_approximation_of_mem_nhds_diagonal πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
Set.instMembership
DFunLike.coe
ContinuousMap
instFunLike
Finset.sum
Finset.univ
Fin.fintype
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
TopologicalSpace.Clopens
TopologicalSpace.Clopens.instSetLike
β€”exists_finite_approximation_of_mem_nhds_diagonal
IsClopen.preimage
isClopen_discrete
instDiscreteTopologyFin
Fintype.sum_eq_single
Set.indicator_of_notMem
Set.indicator_of_mem
exists_finite_sum_const_mulIndicator_approximation_of_mem_nhds_diagonal πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
Set.instMembership
DFunLike.coe
ContinuousMap
instFunLike
Finset.prod
Finset.univ
Fin.fintype
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
TopologicalSpace.Clopens
TopologicalSpace.Clopens.instSetLike
β€”exists_finite_approximation_of_mem_nhds_diagonal
IsClopen.preimage
isClopen_discrete
instDiscreteTopologyFin
Fintype.prod_eq_single
Set.mulIndicator_of_notMem
Set.mulIndicator_of_mem

TopologicalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_open_cover_prod_subset_of_mem_nhds_diagonal_of_compact πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
IsOpenCover
Finset
SetLike.instMembership
Finset.instSetLike
Set.instHasSubset
SProd.sprod
Set.instSProd
SetLike.coe
Opens
Opens.instSetLike
β€”IsCompact.elim_finite_subcover
isCompact_univ
Set.mem_iUnion
IsOpenCover.of_sets
Set.iUnion_subtype
Set.iUnion_congr_Prop
exists_open_prod_subset_of_mem_nhds_diagonal
exists_open_prod_subset_of_mem_nhds_diagonal πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsSet
instTopologicalSpaceProd
Set.diagonal
IsOpen
Set.instMembership
Set.instHasSubset
SProd.sprod
Set.instSProd
β€”mem_nhdsSet_iff_forall
mem_nhds_prod_iff'
IsOpen.inter

TopologicalSpace.IsOpenCover

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_clopen_cover πŸ“–mathematicalTopologicalSpace.IsOpenCoverSet
Set.instHasSubset
SetLike.coe
TopologicalSpace.Clopens
TopologicalSpace.Clopens.instSetLike
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
Set.univ
Set.iUnion
β€”IsCompact.elim_finite_subcover
isCompact_univ
Set.mem_iUnion
Set.mem_iUnionβ‚‚
Set.mem_iUnion_of_mem
Equiv.symm_apply_apply
compact_exists_isClopen_in_isOpen
TopologicalSpace.Opens.isOpen
exists_mem
exists_finite_nonempty_disjoint_clopen_cover πŸ“–mathematicalTopologicalSpace.IsOpenCoverSet
Set.instHasSubset
SetLike.coe
TopologicalSpace.Clopens
TopologicalSpace.Clopens.instSetLike
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
Set.univ
Set.iUnion
Pairwise
Function.onFun
Disjoint
TopologicalSpace.Clopens.instPartialOrder
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
TopologicalSpace.Clopens.instBooleanAlgebra
β€”exists_finite_clopen_cover
Fintype.exists_disjointed_le
Finset.mem_filter
subset_trans
Set.instIsTransSubset
Set.mem_iUnion
TopologicalSpace.Clopens.coe_finset_sup
Set.iUnion_congr_Prop
Set.iUnion_true
Finset.mem_univ
Equiv.symm_apply_apply
Pairwise.comp_of_injective
Subtype.val_injective
Equiv.injective

---

← Back to Index