GDelta
📁 Source: Mathlib/Topology/Separation/GDelta.lean
Statistics
| Metric | Count |
|---|---|
| 2 | |
| 16 | |
| Total | 18 |
Disjoint
Theorems
Finset
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isGδ_compl 📖 | mathematical | — | IsGδCompl.complSetSet.instComplSetLike.coeFinsetinstSetLike | — | Set.Finite.isGδ_complfinite_toSet |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isGδ 📖 | mathematical | — | IsGδ | — | PerfectlyNormalSpace.closed_gdelta |
IsGδ
Theorems
PerfectlyNormalSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closed_gdelta 📖 | mathematical | — | IsGδ | — | — |
toCompletelyNormalSpace 📖 | mathematical | — | CompletelyNormalSpace | — | separatedNhds_iff_disjointhasSeparatingCovers_iff_separatedNhdsHasSeparatingCover.monoDisjoint.hasSeparatingCover_closed_gdelta_righttoNormalSpaceisClosed_closureclosed_gdeltasubset_closureDisjoint.symm |
toNormalSpace 📖 | mathematical | — | NormalSpace | — | — |
Set.Countable
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isGδ_compl 📖 | mathematical | — | IsGδCompl.complSetSet.instCompl | — | Set.biUnion_of_singletonSet.compl_iUnion₂IsGδ.biInterIsGδ.compl_singleton |
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isGδ 📖 | mathematical | — | IsGδ | — | induction_onIsGδ.emptyIsGδ.unionIsGδ.singleton |
isGδ_compl 📖 | mathematical | — | IsGδCompl.complSetSet.instCompl | — | Set.Countable.isGδ_complcountable |
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isGδ_compl 📖 | mathematical | Set.Subsingleton | IsGδCompl.complSetSet.instCompl | — | Set.Finite.isGδ_complfinite |
T6Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toPerfectlyNormalSpace 📖 | mathematical | — | PerfectlyNormalSpace | — | — |
toT0Space 📖 | mathematical | — | T0Space | — | — |
toT5Space 📖 | mathematical | — | T5Space | — | instT1SpaceOfT0SpaceOfR0SpacetoT0SpaceinstR0SpaceOfPerfectlyNormalSpacetoPerfectlyNormalSpacePerfectlyNormalSpace.toCompletelyNormalSpace |
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
PerfectlyNormalSpace 📖 | CompData | |
T6Space 📖 | CompData |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instR0SpaceOfPerfectlyNormalSpace 📖 | mathematical | — | R0Space | — | specializes_iff_forall_closedIsClosed.isGδSet.mem_sInterSpecializes.mem_open |
---