Documentation Verification Report

GDelta

📁 Source: Mathlib/Topology/Separation/GDelta.lean

Statistics

MetricCount
DefinitionsPerfectlyNormalSpace, T6Space
2
TheoremshasSeparatingCover_closed_gdelta_right, isGδ_compl, isGδ, compl_singleton, singleton, closed_gdelta, toCompletelyNormalSpace, toNormalSpace, isGδ_compl, isGδ, isGδ_compl, isGδ_compl, toPerfectlyNormalSpace, toT0Space, toT5Space, instR0SpaceOfPerfectlyNormalSpace
16
Total18

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
hasSeparatingCover_closed_gdelta_right 📖mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsGδ
HasSeparatingCoverSet.eq_empty_or_nonempty
Set.disjoint_univ
Set.sInter_empty
Set.hasSeparatingCover_empty_left
Set.Countable.exists_surjective
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.subset_iInter
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
Set.subset_sInter
Set.iInter_subset_of_subset
subset_refl
Set.instReflSubset
Set.compl_iInter
Set.subset_compl_comm
subset_compl_left
isOpen_compl_iff
isClosed_closure
closure_compl
closure_eq_iff_isClosed
IsOpen.subset_interior_closure
normal_exists_closure_subset
Set.sInter_subset_of_mem

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
isGδ_compl 📖mathematicalIsGδ
Compl.compl
Set
Set.instCompl
SetLike.coe
Finset
instSetLike
Set.Finite.isGδ_compl
finite_toSet

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isGδ 📖mathematicalIsGδPerfectlyNormalSpace.closed_gdelta

IsGδ

Theorems

NameKindAssumesProvesValidatesDepends On
compl_singleton 📖mathematicalIsGδ
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
IsOpen.isGδ
isOpen_compl_singleton
singleton 📖mathematicalIsGδ
Set
Set.instSingletonSet
Filter.HasBasis.exists_antitone_subbasis
FirstCountableTopology.nhds_generated_countable
nhds_basis_opens
biInter_basis_nhds
Filter.HasAntitoneBasis.toHasBasis
biInter
Set.to_countable
SetCoe.countable
instCountableNat
IsOpen.isGδ

PerfectlyNormalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
closed_gdelta 📖mathematicalIsGδ
toCompletelyNormalSpace 📖mathematicalCompletelyNormalSpaceseparatedNhds_iff_disjoint
hasSeparatingCovers_iff_separatedNhds
HasSeparatingCover.mono
Disjoint.hasSeparatingCover_closed_gdelta_right
toNormalSpace
isClosed_closure
closed_gdelta
subset_closure
Disjoint.symm
toNormalSpace 📖mathematicalNormalSpace

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
isGδ_compl 📖mathematicalIsGδ
Compl.compl
Set
Set.instCompl
Set.biUnion_of_singleton
Set.compl_iUnion₂
IsGδ.biInter
IsGδ.compl_singleton

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isGδ 📖mathematicalIsGδinduction_on
IsGδ.empty
IsGδ.union
IsGδ.singleton
isGδ_compl 📖mathematicalIsGδ
Compl.compl
Set
Set.instCompl
Set.Countable.isGδ_compl
countable

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isGδ_compl 📖mathematicalSet.SubsingletonIsGδ
Compl.compl
Set
Set.instCompl
Set.Finite.isGδ_compl
finite

T6Space

Theorems

NameKindAssumesProvesValidatesDepends On
toPerfectlyNormalSpace 📖mathematicalPerfectlyNormalSpace
toT0Space 📖mathematicalT0Space
toT5Space 📖mathematicalT5SpaceinstT1SpaceOfT0SpaceOfR0Space
toT0Space
instR0SpaceOfPerfectlyNormalSpace
toPerfectlyNormalSpace
PerfectlyNormalSpace.toCompletelyNormalSpace

(root)

Definitions

NameCategoryTheorems
PerfectlyNormalSpace 📖CompData
2 mathmath: instPerfectlyNormalSpaceOfPseudoMetrizableSpace, T6Space.toPerfectlyNormalSpace
T6Space 📖CompData
1 mathmath: instT6SpaceOfMetrizableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instR0SpaceOfPerfectlyNormalSpace 📖mathematicalR0Spacespecializes_iff_forall_closed
IsClosed.isGδ
Set.mem_sInter
Specializes.mem_open

---

← Back to Index