Documentation Verification Report

Hausdorff

πŸ“ Source: Mathlib/Topology/Separation/Hausdorff.lean

Statistics

MetricCount
DefinitionsT2Quotient, instTopologicalSpace, mk, T2Space, t2Setoid
5
TheoremsisClosed, ext_on, isClosedEmbedding, isClosedMap, limUnder_eq, eventuallyEq_nhds_iff_eventuallyEq_nhdsNE, ne_iff_eventually_ne, toT2Space, limUnder_eq, limUnder_eq_iff, isClosedEmbedding, isClosed_range, t2Space, isClosed_eq, disjoint_nhdsSet_nhds, inter, isClosed, nhdsSet_inter_eq, preimage_continuous, separation_of_notMem, subsingleton, of_surjective_continuous, isCompact_closure_iff, isCompact_iff, t2Space, t2Space, t2Space_iff_t0Space, of_finset_finset, of_isClosed_isCompact_closure_compl_isClosed, of_isCompact_isCompact, of_singleton_finset, t2Space, t2Space_iff, closure, of_subset_closure, t2_separation, exists_isOpen_superset, exists_mem_nhdsSet, pairwiseDisjoint_nhds, t2Space, compatible, continuous_lift, continuous_mk, inductionOn, inductionOnβ‚‚, instT2Space, lift_mk, mk_eq, surjective_mk, unique_lift, of_injective_continuous, r1Space, t1Space, t2, t2Space, instT2Space, lim_eq_iff_le_nhds, disjoint_nhds_nhds, eqOn_closureβ‚‚, eqOn_closureβ‚‚', eq_of_nhds_neBot, exists_subset_nhds_of_isCompact, image_closure_of_isCompact, instT2SpaceOfR1SpaceOfT0Space, instT2SpaceSubtype, instT2SpaceSum, isClosed_diagonal, isClosed_eq, isIrreducible_iff_singleton, isOpen_iff_ultrafilter', isOpen_ne_fun, isPreirreducible_iff_forall_mem_subset_closure_singleton, isPreirreducible_iff_subsingleton, limUnder_nhdsWithin_id, limUnder_nhds_id, lim_eq, lim_eq_iff, lim_nhds, lim_nhdsWithin, not_preirreducible_nontrivial_t2, pairwise_disjoint_nhds, separated_by_continuous, separated_by_isOpenEmbedding, t2Space_antitone, t2Space_iff, t2Space_iff_disjoint_nhds, t2Space_iff_nhds, t2Space_iff_of_isOpenQuotientMap, t2_iff_isClosed_diagonal, t2_iff_nhds, t2_iff_ultrafilter, t2_separation, t2_separation_compact_nhds, t2_separation_nhds, tendsto_nhds_unique, tendsto_nhds_unique', tendsto_nhds_unique_of_eventuallyEq, tendsto_nhds_unique_of_frequently_eq
98
Total103

CompactExhaustion

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed πŸ“–mathematicalβ€”IsClosed
DFunLike.coe
CompactExhaustion
Set
instFunLikeNatSet
β€”IsCompact.isClosed
isCompact

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
ext_on πŸ“–β€”Dense
Continuous
Set.EqOn
β€”β€”Set.EqOn.closure
isClosedEmbedding πŸ“–mathematicalContinuousTopology.IsClosedEmbeddingβ€”Topology.IsClosedEmbedding.of_continuous_injective_isClosedMap
isClosedMap
isClosedMap πŸ“–mathematicalContinuousIsClosedMapβ€”IsCompact.isClosed
IsCompact.image
IsClosed.isCompact
limUnder_eq πŸ“–mathematicalContinuouslimUnder
nhds
β€”Filter.Tendsto.limUnder_eq
nhds_neBot
tendsto

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
eventuallyEq_nhds_iff_eventuallyEq_nhdsNE πŸ“–mathematicalContinuousAtFilter.EventuallyEq
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
β€”eventuallyEq_nhds_of_eventuallyEq_nhdsNE
Filter.Eventually.and
eventually_nhdsWithin_of_eventually_nhds
ne_iff_eventually_ne
Filter.empty_notMem
Filter.EventuallyEq.filter_mono
nhdsWithin_le_nhds
ne_iff_eventually_ne πŸ“–mathematicalContinuousAtFilter.Eventually
nhds
β€”t2_separation
Filter.mp_mem
Filter.inter_mem
preimage_mem_nhds
IsOpen.mem_nhds
Filter.univ_mem'
Set.disjoint_iff_inter_eq_empty
eventually_nhds_iff

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
toT2Space πŸ“–mathematicalβ€”T2Spaceβ€”isOpen_discrete
Set.disjoint_singleton

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
limUnder_eq_iff πŸ“–mathematicalTendsto
nhds
limUnderβ€”tendsto_nhds_limUnder
Tendsto.limUnder_eq

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
limUnder_eq πŸ“–mathematicalFilter.Tendsto
nhds
limUnderβ€”lim_eq
Filter.map_neBot

Function.LeftInverse

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedEmbedding πŸ“–mathematicalContinuousTopology.IsClosedEmbeddingβ€”Topology.IsEmbedding.of_leftInverse
isClosed_range
isClosed_range πŸ“–mathematicalContinuousIsClosed
Set.range
β€”Set.EqOn.closure
Set.RightInvOn.eqOn
rightInvOn_range
Continuous.comp
continuous_id
isClosed_of_closure_subset

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space πŸ“–mathematicalβ€”T2Spaceβ€”Topology.IsEmbedding.t2Space
isEmbedding

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_eq πŸ“–mathematicalContinuousOnIsClosed
setOf
Set
Set.instMembership
β€”ContinuousOn.preimage_isClosed_of_isClosed
ContinuousOn.prodMk
isClosed_diagonal

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_nhdsSet_nhds πŸ“–mathematicalIsCompact
Set
Set.instMembership
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”nhdsSet_singleton
SeparatedNhds.disjoint_nhdsSet
SeparatedNhds.of_isCompact_isCompact_isClosed
T2Space.r1Space
isCompact_singleton
isClosed_singleton
T2Space.t1Space
Set.disjoint_singleton_right
inter πŸ“–mathematicalIsCompactSet
Set.instInter
β€”inter_right
isClosed
isClosed πŸ“–mathematicalIsCompactIsClosedβ€”isClosed_iff_forall_filter
exists_clusterPt
Set.mem_of_eq_of_mem
eq_of_nhds_neBot
ClusterPt.neBot
ClusterPt.mono
nhdsSet_inter_eq πŸ“–mathematicalIsCompactnhdsSet
Set
Set.instInter
Filter
Filter.instInf
β€”le_antisymm
nhdsSet_inter_le
nhdsSet_inf_eq_biSup
iSup_congr_Prop
inf_nhdsSet_eq_biSup
sSup_image
iSupβ‚‚_le
eq_or_ne
le_iSupβ‚‚_of_le
Eq.le
inf_idem
bot_le
Disjoint.eq_bot
disjoint_nhds_nhds
preimage_continuous πŸ“–mathematicalIsCompact
Continuous
Set.preimageβ€”IsClosed.isCompact
IsClosed.preimage
isClosed
separation_of_notMem πŸ“–mathematicalIsCompact
Set
Set.instMembership
IsOpen
Set.instHasSubset
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”SeparatedNhds.of_isCompact_isCompact_isClosed
T2Space.r1Space
isCompact_singleton
isClosed_singleton
T2Space.t1Space
Set.disjoint_singleton_right

IsPreirreducible

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton πŸ“–mathematicalIsPreirreducibleSet.Subsingletonβ€”isPreirreducible_iff_subsingleton

IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
of_surjective_continuous πŸ“–mathematicalContinuousTopology.IsQuotientMapβ€”IsClosedMap.isQuotientMap
Continuous.isClosedMap

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_closure_iff πŸ“–mathematicalR1SpaceIsCompact
topologicalSpace
closure
Set.image
Function.eval
β€”instR1SpaceForall
isCompact_iff πŸ“–mathematicalT2SpaceIsCompact
topologicalSpace
IsClosed
Set.image
Function.eval
β€”IsCompact.isClosed
t2Space
IsCompact.image
continuous_apply
IsCompact.of_isClosed_subset
isCompact_univ_pi
Set.subset_pi_eval_image
t2Space πŸ“–mathematicalT2SpacetopologicalSpaceβ€”instT2SpaceOfR1SpaceOfT0Space
instR1SpaceForall
T2Space.r1Space
instT0Space
T1Space.t0Space
T2Space.t1Space

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space πŸ“–mathematicalβ€”T2Space
instTopologicalSpaceProd
β€”instT2SpaceOfR1SpaceOfT0Space
instR1SpaceProd
T2Space.r1Space
instT0Space
T1Space.t0Space
T2Space.t1Space

R1Space

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space_iff_t0Space πŸ“–mathematicalβ€”T2Space
T0Space
β€”T1Space.t0Space
T2Space.t1Space
instT2SpaceOfR1SpaceOfT0Space

SeparatedNhds

Theorems

NameKindAssumesProvesValidatesDepends On
of_finset_finset πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
SeparatedNhds
SetLike.coe
Finset.instSetLike
β€”of_isCompact_isCompact
Set.Finite.isCompact
Finset.finite_toSet
of_isClosed_isCompact_closure_compl_isClosed πŸ“–mathematicalIsCompact
closure
Compl.compl
Set
Set.instCompl
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”IsCompact.of_isClosed_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Disjoint.subset_compl_left
subset_closure
Set.diff_union_of_subset
interior_subset
union_left
IsClosed.frontier_eq
frontier_eq_closure_inter_closure
IsClosed.closure_eq
of_isCompact_isCompact_isClosed
IsClosed.inter
isClosed_closure
Set.inter_subset_right
Set.disjoint_of_subset_left
Set.inter_subset_left
isOpen_interior
IsClosed.isOpen_compl
le_rfl
Disjoint.mono_left
disjoint_compl_right
of_isCompact_isCompact πŸ“–mathematicalIsCompact
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”Set.prod_subset_compl_diagonal_iff_disjoint
generalized_tube_lemma
IsClosed.isOpen_compl
isClosed_diagonal
of_singleton_finset πŸ“–mathematicalFinset
Finset.instMembership
SeparatedNhds
Set
Set.instSingletonSet
SetLike.coe
Finset.instSetLike
β€”Finset.coe_singleton
of_finset_finset
Finset.disjoint_singleton_left

SeparationQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space πŸ“–mathematicalβ€”T2Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”t2Space_iff
t2Space_iff πŸ“–mathematicalβ€”T2Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
R1Space
β€”Filter.disjoint_comap_iff
Function.Surjective.forallβ‚‚

Set

Theorems

NameKindAssumesProvesValidatesDepends On
pairwiseDisjoint_nhds πŸ“–mathematicalβ€”PairwiseDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”Pairwise.set_pairwise
pairwise_disjoint_nhds

Set.EqOn

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalSet.EqOn
Continuous
closureβ€”closure_minimal
isClosed_eq
of_subset_closure πŸ“–β€”Set.EqOn
ContinuousOn
Set
Set.instHasSubset
closure
β€”β€”mem_closure_iff_clusterPt
tendsto_nhds_unique_of_eventuallyEq
Filter.Tendsto.mono_left
nhdsWithin_mono
eventuallyEq_of_mem
self_mem_nhdsWithin

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
t2_separation πŸ“–mathematicalβ€”Set
Set.instMembership
IsOpen
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.PairwiseDisjoint.exists_mem_filter_basis
Set.pairwiseDisjoint_nhds
nhds_basis_opens

Set.InjOn

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isOpen_superset πŸ“–mathematicalSet.InjOn
IsCompact
ContinuousAt
Set
Filter
Filter.instMembership
nhds
IsOpen
Set.instHasSubset
β€”exists_mem_nhdsSet
mem_nhdsSet_iff_exists
mono
exists_mem_nhdsSet πŸ“–mathematicalSet.InjOn
IsCompact
ContinuousAt
Set
Filter
Filter.instMembership
nhds
nhdsSetβ€”eq_or_ne
Filter.mem_of_superset
prod_mem_nhds
Set.forall_prod_set
ContinuousAt.prodMap'
IsOpen.mem_nhds
IsClosed.isOpen_compl
isClosed_diagonal
ne
Filter.Eventually.mono
Filter.eventually_prod_self_iff
IsCompact.nhdsSet_prod_eq
eventually_nhdsSet_iff_forall

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space πŸ“–mathematicalT2SpaceinstTopologicalSpaceSigmaβ€”eq_or_ne
separated_by_isOpenEmbedding
Topology.IsOpenEmbedding.sigmaMk
separated_by_continuous
DiscreteTopology.toT2Space
continuous_def
isOpen_sigma_fst_preimage

T2Quotient

Definitions

NameCategoryTheorems
instTopologicalSpace πŸ“–CompOp
3 mathmath: instT2Space, continuous_lift, continuous_mk
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compatible πŸ“–β€”Continuous
t2Setoid
β€”β€”sInf_le
T2Space.of_injective_continuous
Setoid.kerLift_injective
Continuous.quotient_lift
continuous_lift πŸ“–mathematicalContinuousT2Quotient
instTopologicalSpace
lift
β€”continuous_coinduced_dom
continuous_mk πŸ“–mathematicalβ€”Continuous
T2Quotient
instTopologicalSpace
β€”continuous_quotient_mk'
inductionOn πŸ“–β€”β€”β€”β€”β€”
inductionOnβ‚‚ πŸ“–β€”β€”β€”β€”β€”
instT2Space πŸ“–mathematicalβ€”T2Space
T2Quotient
instTopologicalSpace
β€”t2Space_iff
separated_by_continuous
continuous_map_sInf
lift_mk πŸ“–mathematicalContinuousliftβ€”compatible
mk_eq πŸ“–β€”β€”β€”β€”Setoid.quotient_mk_sInf_eq
surjective_mk πŸ“–mathematicalβ€”T2Quotientβ€”Quotient.mk_surjective
unique_lift πŸ“–mathematicalContinuous
T2Quotient
liftβ€”Function.Surjective.right_cancellable
lift.congr_simp

T2Space

Theorems

NameKindAssumesProvesValidatesDepends On
of_injective_continuous πŸ“–mathematicalContinuousT2Spaceβ€”separated_by_continuous
r1Space πŸ“–mathematicalβ€”R1Spaceβ€”specializes_of_eq
disjoint_nhds_nhds
eq_or_ne
t1Space πŸ“–mathematicalβ€”T1Spaceβ€”t1Space_iff_disjoint_pure_nhds
Disjoint.mono_left
pure_le_nhds
disjoint_nhds_nhds
t2 πŸ“–mathematicalβ€”Pairwise
Set
IsOpen
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
t2Space πŸ“–mathematicalTopology.IsEmbeddingT2Spaceβ€”T2Space.of_injective_continuous
injective
continuous

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instT2Space πŸ“–mathematicalβ€”T2Space
topologicalSpace
β€”Topology.IsEmbedding.t2Space
Topology.IsEmbedding.uliftDown

Ultrafilter

Theorems

NameKindAssumesProvesValidatesDepends On
lim_eq_iff_le_nhds πŸ“–mathematicalβ€”lim
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
toFilter
nhds
β€”le_nhds_lim
lim_eq
neBot

(root)

Definitions

NameCategoryTheorems
T2Quotient πŸ“–CompOp
4 mathmath: T2Quotient.instT2Space, T2Quotient.continuous_lift, T2Quotient.continuous_mk, T2Quotient.surjective_mk
T2Space πŸ“–CompData
85 mathmath: SeparationQuotient.t2Space, ContinuousLinearMap.instT2Space, CategoryTheory.PreGaloisCategory.instT2SpaceAutFunctorFintypeCat, AddGroupFilterBasis.t2Space_iff, MeasureTheory.FiniteMeasure.t2Space, AddOpposite.instT2Space, EReal.instT2Space, Compactum.instT2SpaceA, t2Space_antitone, instT2SpaceStoneCech, IsTopologicalGroup.t2Space_of_one_sep, T2Quotient.instT2Space, instT2SpaceOfR1SpaceOfT0Space, IsAdic.isAdicComplete_iff, GroupFilterBasis.t2Space_iff_sInter_subset, PowerSeries.WithPiTopology.instT2Space, DiscreteTopology.toT2Space, t2Space_of_properVAdd_of_t1AddGroup, T2Space.of_injective_continuous, R1Space.t2Space_iff_t0Space, TrivSqZeroExt.instT2Space, UniformFun.instT2Space, PointwiseConvergenceCLM.instT2Space, Metric.Snowflaking.instT2Space, OrderClosedTopology.to_t2Space, QuotientGroup.instT2Space, QuotientAddGroup.instT2Space, CommRingCat.HomTopology.instT2SpaceHomOfCarrier, t2space_iff_isSeparatedMap, t2Space_quotient_addAction_of_properVAdd, CompHausLike.instT2SpaceCarrierObjTopCatCompHausLikeToTop, UniformConvergenceCLM.t2Space, DomMulAct.instT2Space, MvPowerSeries.WithPiTopology.instT2Space, UniformOnFun.t2Space_of_covering, t2Space_of_properlyDiscontinuousVAdd_of_t2Space, t2_iff_isClosed_diagonal, MeasureTheory.ProbabilityMeasure.t2Space, t2Space_iff_disjoint_nhds, WeakDual.instT2Space, CStarMatrix.instT2Space, IsTopologicalGroup.t2Space_iff_one_closed, AddUnits.instT2Space, Prod.t2Space, Units.instT2Space, ContinuousMap.instT2Space, T25Space.t2Space, ULift.instT2Space, t2Space_iff_nhds, ContinuousMapZero.instT2Space, Complex.instT2Space, ContinuousMonoidHom.instT2Space, t2Space_quotient_mulAction_of_properSMul, ContinuousMultilinearMap.instT2Space, Ultrafilter.t2Space, TotallySeparatedSpace.t2Space, CompactConvergenceCLM.instT2Space, instT2SpaceSubtype, ConnectedComponents.t2, ContinuousAddMonoidHom.instT2Space, SeparatingDual.t2Space, t2Space_iff_of_isOpenQuotientMap, IsTopologicalAddGroup.t2Space_of_zero_sep, instT2SpaceSum, IsTopologicalAddGroup.t2Space_iff_zero_closed, TopologicalSpace.t2Space_of_metrizableSpace, ContinuousAlternatingMap.instT2Space, instT2SpaceMatrix, SeparationQuotient.t2Space_iff, t2_iff_ultrafilter, krullTopology_t2, IsAdic.isHausdorff_iff, t2_iff_nhds, CompHausLike.is_hausdorff, Topology.IsEmbedding.t2Space, AddGroupFilterBasis.t2Space_iff_sInter_subset, Homeomorph.t2Space, ENNReal.instT2Space, GroupFilterBasis.t2Space_iff, MulOpposite.instT2Space, t2Space_iff, t2Space_of_properlyDiscontinuousSMul_of_t2Space, t2Space_of_properSMul_of_t1Group, DomAddAct.instT2Space, CompHaus.instT2SpaceCarrierToTopTrue
t2Setoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_nhds_nhds πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”Filter.NeBot.ne
nhds_neBot
t2Space_iff_disjoint_nhds
eqOn_closureβ‚‚ πŸ“–β€”Continuous
instTopologicalSpaceProd
Set
Set.instMembership
closure
β€”β€”eqOn_closureβ‚‚'
Continuous.uncurry_left
Continuous.uncurry_right
eqOn_closureβ‚‚' πŸ“–β€”Continuous
Set
Set.instMembership
closure
β€”β€”closure_minimal
Set.mem_iInterβ‚‚
Set.EqOn.closure
isClosed_biInter
isClosed_eq
eq_of_nhds_neBot πŸ“–β€”β€”β€”β€”t2_iff_nhds
exists_subset_nhds_of_isCompact πŸ“–β€”Directed
Set
Set.instHasSubset
IsCompact
Filter
Filter.instMembership
nhds
β€”β€”exists_subset_nhds_of_isCompact'
IsCompact.isClosed
image_closure_of_isCompact πŸ“–mathematicalIsCompact
closure
ContinuousOn
Set.imageβ€”Set.Subset.antisymm
ContinuousOn.image_closure
closure_minimal
Set.image_mono
subset_closure
IsCompact.isClosed
IsCompact.image_of_continuousOn
instT2SpaceOfR1SpaceOfT0Space πŸ“–mathematicalβ€”T2Spaceβ€”t2Space_iff_disjoint_nhds
disjoint_nhds_nhds_iff_not_inseparable
Inseparable.eq
instT2SpaceSubtype πŸ“–mathematicalβ€”T2Space
instTopologicalSpaceSubtype
β€”instT2SpaceOfR1SpaceOfT0Space
instR1SpaceSubtype
T2Space.r1Space
Subtype.t0Space
T1Space.t0Space
T2Space.t1Space
instT2SpaceSum πŸ“–mathematicalβ€”T2Space
instTopologicalSpaceSum
β€”separated_by_isOpenEmbedding
Topology.IsOpenEmbedding.inl
separated_by_continuous
DiscreteTopology.toT2Space
instDiscreteTopologyBool
continuous_isLeft
Topology.IsOpenEmbedding.inr
isClosed_diagonal πŸ“–mathematicalβ€”IsClosed
instTopologicalSpaceProd
Set.diagonal
β€”t2_iff_isClosed_diagonal
isClosed_eq πŸ“–mathematicalContinuousIsClosed
setOf
β€”continuous_iff_isClosed
Continuous.prodMk
isClosed_diagonal
isIrreducible_iff_singleton πŸ“–mathematicalβ€”IsIrreducible
Set
Set.instSingletonSet
β€”IsIrreducible.eq_1
isPreirreducible_iff_subsingleton
Set.exists_eq_singleton_iff_nonempty_subsingleton
isOpen_iff_ultrafilter' πŸ“–mathematicalβ€”IsOpen
Set
Filter
Filter.instMembership
Ultrafilter.toFilter
β€”isOpen_iff_ultrafilter
Ultrafilter.le_nhds_lim
Ultrafilter.lim_eq_iff_le_nhds
isOpen_ne_fun πŸ“–mathematicalContinuousIsOpen
setOf
β€”isOpen_compl_iff
isClosed_eq
isPreirreducible_iff_forall_mem_subset_closure_singleton πŸ“–mathematicalβ€”IsPreirreducible
Set
Set.instHasSubset
closure
Set.instSingletonSet
β€”r1_separation
Specializes.mem_closure
Inseparable.specializes
Set.Nonempty.not_disjoint
Set.Nonempty.mono
Set.inter_subset_right
Specializes.mem_open
specializes_iff_mem_closure
isPreirreducible_iff_subsingleton πŸ“–mathematicalβ€”IsPreirreducible
Set.Subsingleton
β€”T2Space.r1Space
IsClosed.closure_eq
T2Space.t1Space
limUnder_nhdsWithin_id πŸ“–mathematicalSet
Set.instMembership
closure
limUnder
nhdsWithin
β€”lim_nhdsWithin
limUnder_nhds_id πŸ“–mathematicalβ€”limUnder
nhds
β€”lim_nhds
lim_eq πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
limβ€”tendsto_nhds_unique
le_nhds_lim
lim_eq_iff πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
limβ€”le_nhds_lim
lim_eq
lim_nhds πŸ“–mathematicalβ€”lim
nhds
β€”lim_eq
nhds_neBot
le_rfl
lim_nhdsWithin πŸ“–mathematicalSet
Set.instMembership
closure
lim
nhdsWithin
β€”lim_eq
mem_closure_iff_clusterPt
inf_le_left
not_preirreducible_nontrivial_t2 πŸ“–β€”β€”β€”β€”Set.Subsingleton.not_nontrivial
IsPreirreducible.subsingleton
PreirreducibleSpace.isPreirreducible_univ
Set.nontrivial_univ
pairwise_disjoint_nhds πŸ“–mathematicalβ€”Pairwise
Function.onFun
Filter
Disjoint
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”disjoint_nhds_nhds
separated_by_continuous πŸ“–mathematicalContinuousIsOpen
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”t2_separation
IsOpen.preimage
Disjoint.preimage
separated_by_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbeddingIsOpen
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”t2_separation
Topology.IsOpenEmbedding.isOpenMap
Set.mem_image_of_mem
Set.disjoint_image_of_injective
Topology.IsEmbedding.injective
Topology.IsOpenEmbedding.toIsEmbedding
t2Space_antitone πŸ“–mathematicalβ€”Antitone
TopologicalSpace
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Prop.partialOrder
T2Space
β€”T2Space.of_injective_continuous
continuous_id_of_le
t2Space_iff πŸ“–mathematicalβ€”T2Space
Pairwise
Set
IsOpen
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
t2Space_iff_disjoint_nhds πŸ“–mathematicalβ€”T2Space
Pairwise
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”t2Space_iff
Filter.HasBasis.disjoint_iff
nhds_basis_opens
t2Space_iff_nhds πŸ“–mathematicalβ€”T2Space
Pairwise
Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
t2Space_iff_of_isOpenQuotientMap πŸ“–mathematicalIsOpenQuotientMapT2Space
IsClosed
instTopologicalSpaceProd
setOf
β€”t2_iff_isClosed_diagonal
IsOpenQuotientMap.prodMap
IsClosed.preimage
IsOpenQuotientMap.continuous
Function.Surjective.image_preimage
IsOpenQuotientMap.surjective
IsOpenQuotientMap.isOpenMap
t2_iff_isClosed_diagonal πŸ“–mathematicalβ€”T2Space
IsClosed
instTopologicalSpaceProd
Set.diagonal
β€”nhds_prod_eq
t2_iff_nhds πŸ“–mathematicalβ€”T2Spaceβ€”β€”
t2_iff_ultrafilter πŸ“–mathematicalβ€”T2Spaceβ€”t2_iff_nhds
t2_separation πŸ“–mathematicalβ€”IsOpen
Set
Set.instMembership
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”T2Space.t2
t2_separation_compact_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
IsCompact
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Filter.HasBasis.disjoint_iff
compact_basis_nhds
disjoint_nhds_nhds
t2_separation_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”t2_separation
IsOpen.mem_nhds
tendsto_nhds_unique πŸ“–β€”Filter.Tendsto
nhds
β€”β€”Inseparable.eq
T1Space.t0Space
T2Space.t1Space
tendsto_nhds_unique_inseparable
T2Space.r1Space
tendsto_nhds_unique' πŸ“–β€”Filter.Tendsto
nhds
β€”β€”tendsto_nhds_unique
tendsto_nhds_unique_of_eventuallyEq πŸ“–β€”Filter.Tendsto
nhds
Filter.EventuallyEq
β€”β€”tendsto_nhds_unique
Filter.Tendsto.congr'
tendsto_nhds_unique_of_frequently_eq πŸ“–β€”Filter.Tendsto
nhds
Filter.Frequently
β€”β€”Filter.Tendsto.frequently
Filter.Tendsto.prodMk_nhds
IsOpen.mem_nhds
IsClosed.isOpen_compl
isClosed_diagonal

---

← Back to Index