Hausdorff
π Source: Mathlib/Topology/Separation/Hausdorff.lean
Statistics
CompactExhaustion
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isClosed π | mathematical | β | IsClosedDFunLike.coeCompactExhaustionSetinstFunLikeNatSet | β | IsCompact.isClosedisCompact |
Continuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
ext_on π | β | DenseContinuousSet.EqOn | β | β | Set.EqOn.closure |
isClosedEmbedding π | mathematical | Continuous | Topology.IsClosedEmbedding | β | Topology.IsClosedEmbedding.of_continuous_injective_isClosedMapisClosedMap |
isClosedMap π | mathematical | Continuous | IsClosedMap | β | IsCompact.isClosedIsCompact.imageIsClosed.isCompact |
limUnder_eq π | mathematical | Continuous | limUndernhds | β | Filter.Tendsto.limUnder_eqnhds_neBottendsto |
ContinuousAt
Theorems
DiscreteTopology
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toT2Space π | mathematical | β | T2Space | β | isOpen_discreteSet.disjoint_singleton |
Filter
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
limUnder_eq_iff π | mathematical | Tendstonhds | limUnder | β | tendsto_nhds_limUnderTendsto.limUnder_eq |
Filter.Tendsto
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
limUnder_eq π | mathematical | Filter.Tendstonhds | limUnder | β | lim_eqFilter.map_neBot |
Function.LeftInverse
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isClosedEmbedding π | mathematical | Continuous | Topology.IsClosedEmbedding | β | Topology.IsEmbedding.of_leftInverseisClosed_range |
isClosed_range π | mathematical | Continuous | IsClosedSet.range | β | Set.EqOn.closureSet.RightInvOn.eqOnrightInvOn_rangeContinuous.compcontinuous_idisClosed_of_closure_subset |
Homeomorph
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space π | mathematical | β | T2Space | β | Topology.IsEmbedding.t2SpaceisEmbedding |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isClosed_eq π | mathematical | ContinuousOn | IsClosedsetOfSetSet.instMembership | β | ContinuousOn.preimage_isClosed_of_isClosedContinuousOn.prodMkisClosed_diagonal |
IsCompact
Theorems
IsPreirreducible
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
subsingleton π | mathematical | IsPreirreducible | Set.Subsingleton | β | isPreirreducible_iff_subsingleton |
IsQuotientMap
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_surjective_continuous π | mathematical | Continuous | Topology.IsQuotientMap | β | IsClosedMap.isQuotientMapContinuous.isClosedMap |
Pi
Theorems
Prod
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space π | mathematical | β | T2SpaceinstTopologicalSpaceProd | β | instT2SpaceOfR1SpaceOfT0SpaceinstR1SpaceProdT2Space.r1SpaceinstT0SpaceT1Space.t0SpaceT2Space.t1Space |
R1Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space_iff_t0Space π | mathematical | β | T2SpaceT0Space | β | T1Space.t0SpaceT2Space.t1SpaceinstT2SpaceOfR1SpaceOfT0Space |
SeparatedNhds
Theorems
SeparationQuotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space π | mathematical | β | T2SpaceSeparationQuotientinstTopologicalSpaceSeparationQuotient | β | t2Space_iff |
t2Space_iff π | mathematical | β | T2SpaceSeparationQuotientinstTopologicalSpaceSeparationQuotientR1Space | β | Filter.disjoint_comap_iffFunction.Surjective.forallβ |
Set
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
pairwiseDisjoint_nhds π | mathematical | β | PairwiseDisjointFilterFilter.instPartialOrderBoundedOrder.toOrderBotPreorder.toLEPartialOrder.toPreorderCompleteLattice.toBoundedOrderFilter.instCompleteLatticeFilternhds | β | Pairwise.set_pairwisepairwise_disjoint_nhds |
Set.EqOn
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closure π | mathematical | Set.EqOnContinuous | closure | β | closure_minimalisClosed_eq |
of_subset_closure π | β | Set.EqOnContinuousOnSetSet.instHasSubsetclosure | β | β | mem_closure_iff_clusterPttendsto_nhds_unique_of_eventuallyEqFilter.Tendsto.mono_leftnhdsWithin_monoeventuallyEq_of_memself_mem_nhdsWithin |
Set.Finite
Theorems
Set.InjOn
Theorems
Sigma
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space π | mathematical | T2Space | instTopologicalSpaceSigma | β | eq_or_neseparated_by_isOpenEmbeddingTopology.IsOpenEmbedding.sigmaMkseparated_by_continuousDiscreteTopology.toT2Spacecontinuous_defisOpen_sigma_fst_preimage |
T2Quotient
Definitions
| Name | Category | Theorems |
|---|---|---|
instTopologicalSpace π | CompOp | |
mk π | CompOp | β |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compatible π | β | Continuoust2Setoid | β | β | sInf_leT2Space.of_injective_continuousSetoid.kerLift_injectiveContinuous.quotient_lift |
continuous_lift π | mathematical | Continuous | T2QuotientinstTopologicalSpacelift | β | continuous_coinduced_dom |
continuous_mk π | mathematical | β | ContinuousT2QuotientinstTopologicalSpace | β | continuous_quotient_mk' |
inductionOn π | β | β | β | β | β |
inductionOnβ π | β | β | β | β | β |
instT2Space π | mathematical | β | T2SpaceT2QuotientinstTopologicalSpace | β | t2Space_iffseparated_by_continuouscontinuous_map_sInf |
lift_mk π | mathematical | Continuous | lift | β | compatible |
mk_eq π | β | β | β | β | Setoid.quotient_mk_sInf_eq |
surjective_mk π | mathematical | β | T2Quotient | β | Quotient.mk_surjective |
unique_lift π | mathematical | ContinuousT2Quotient | lift | β | Function.Surjective.right_cancellablelift.congr_simp |
T2Space
Theorems
Topology.IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t2Space π | mathematical | Topology.IsEmbedding | T2Space | β | T2Space.of_injective_continuousinjectivecontinuous |
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instT2Space π | mathematical | β | T2SpacetopologicalSpace | β | Topology.IsEmbedding.t2SpaceTopology.IsEmbedding.uliftDown |
Ultrafilter
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
lim_eq_iff_le_nhds π | mathematical | β | limFilterPreorder.toLEPartialOrder.toPreorderFilter.instPartialOrdertoFilternhds | β | le_nhds_limlim_eqneBot |
(root)
Definitions
Theorems
---