Documentation Verification Report

NotNormal

📁 Source: Mathlib/Topology/Separation/NotNormal.lean

Statistics

MetricCount
Definitions0
Theoremsmk_lt_continuum, mk_lt_two_pow_mk_dense, not_normal_of_continuum_le_mk, two_pow_mk_le_two_pow_mk_dense, two_pow_mk_lt_continuum
5
Total5

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
mk_lt_continuum 📖mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Cardinal.continuum
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
Cardinal.cantor
two_pow_mk_lt_continuum
mk_lt_two_pow_mk_dense 📖mathematicalDenseCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Set.Elem
Cardinal.instPowCardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
Cardinal.cantor
two_pow_mk_le_two_pow_mk_dense
not_normal_of_continuum_le_mk 📖mathematicalNormalSpaceLT.lt.not_ge
mk_lt_continuum
two_pow_mk_le_two_pow_mk_dense 📖mathematicalDenseCardinal
Cardinal.instLE
Cardinal.instPowCardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Elem
Set.inter_eq_self_of_subset_right
Subtype.image_preimage_val
isClosedMap_subtype_val
isClosed_discrete
Dense.inter_open_nonempty
IsOpen.inter
Set.Nonempty.mono
Set.subset_inter
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Set.diff_subset_diff_left
Set.diff_nonempty
Set.Nonempty.not_disjoint
Set.inter_right_comm
Set.disjoint_of_subset_left
Set.inter_subset_left
SetCoe.ext
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Nat.instAtLeastTwoHAddOfNat
Cardinal.mk_powerset
Cardinal.mk_range_eq
Cardinal.mk_le_mk_of_subset
Set.range_subset_iff
Set.inter_subset_right
normal_separation
Set.disjoint_sdiff_right
two_pow_mk_lt_continuum 📖mathematicalCardinal
Cardinal.instLE
Cardinal.instPowCardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.Elem
Cardinal.continuum
Nat.instAtLeastTwoHAddOfNat
TopologicalSpace.exists_countable_dense
two_pow_mk_le_two_pow_mk_dense
Cardinal.power_le_power_left
two_ne_zero
ZeroLEOneClass.neZero.two
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
NeZero.charZero_one
Cardinal.instCharZero
Cardinal.addLeftMono
Set.Countable.le_aleph0
Cardinal.two_power_aleph0

---

← Back to Index