Documentation Verification Report

Profinite

📁 Source: Mathlib/Topology/Separation/Profinite.lean

Statistics

MetricCount
DefinitionsProfinite
1
Theoremscompact_exists_isClopen_in_isOpen, exists_clopen_of_closed_subset_open, exists_clopen_partition_of_clopen_cover, instTotallySeparatedSpaceOfTotallyDisconnectedSpace, isTopologicalBasis_isClopen, loc_compact_Haus_tot_disc_of_zero_dim, loc_compact_t2_tot_disc_iff_tot_sep, nhds_basis_clopen, totallySeparatedSpace_of_t0_of_basis_clopen, totallySeparatedSpace_of_t1_of_basis_clopen
10
Total11

(root)

Definitions

NameCategoryTheorems
Profinite 📖CompOp
85 mathmath: ProfiniteGrp.instReflectsIsomorphismsProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Profinite.Extend.cocone_pt, CondensedMod.IsSolid.isIso_solidification_map, Profinite.forget_preservesLimits, instFullFintypeCatProfiniteToProfinite, Profinite.Extend.functorOp_map, Profinite.instEnoughProjectives, CondensedMod.isDiscrete_tfae, Profinite.Extend.cone_π_app, Profinite.effectiveEpi_tfae, instFaithfulLightDiagramProfiniteLightDiagramToProfinite, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, lightDiagramToProfinite_map, ProfiniteGrp.instFaithfulProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Condensed.lanPresheafExt_inv, ProfiniteAddGrp.instFaithfulProfiniteForget₂ContinuousAddMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, instFaithfulFintypeCatProfiniteToProfinite, Profinite.injective_of_light, ProfiniteAddGrp.instPreservesLimitsProfiniteForget₂ContinuousAddMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Profinite.epi_iff_surjective, lightProfiniteToLightDiagram_map, Profinite.exists_locallyConstant_finite_aux, lightDiagramToLightProfinite_obj, Profinite.isIso_indexCone_lift, Condensed.isoFinYonedaComponents_hom_apply, Profinite.Extend.functorOp_obj, Condensed.finYoneda_map, LightProfinite.lightToProfinite_map_proj_eq, FintypeCat.toProfinite_map_hom_hom_apply, Profinite.hasColimits, Profinite.instPreregular, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, LightProfinite.instCountableDiscreteQuotient, Condensed.instPreservesLimitsOfShapeOppositeProfiniteDiscreteCarrierToTopTotallyDisconnectedSpaceOfFinite, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, Condensed.instPreservesFiniteProductsOppositeProfiniteVal, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus, Profinite.projective_ultrafilter, CompHaus.toProfinite_obj', Condensed.isoLocallyConstantOfIsColimit_inv, Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus, lightDiagramToProfinite_obj, Condensed.lanPresheafNatIso_hom_app, Profinite.Extend.functor_obj, Condensed.isoFinYonedaComponents_inv_comp, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, Profinite.lift_lifts_assoc, CondensedSet.isDiscrete_tfae, Profinite.exists_locallyConstant, Profinite.lift_lifts, Condensed.StoneanProfinite.instPreservesEffectiveEpisStoneanProfiniteToProfinite, Condensed.StoneanProfinite.instEffectivelyEnoughStoneanProfiniteToProfinite, LightDiagram.id_hom_hom_hom_apply, Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, Condensed.StoneanProfinite.instReflectsEffectiveEpisStoneanProfiniteToProfinite, Profinite.Extend.cocone_ι_app, Condensed.isoFinYoneda_hom_app, Profinite.Extend.cone_pt, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_inv_app, lightDiagramToLightProfinite_map, Profinite.projective_of_extrDisc, Condensed.lanPresheafExt_hom, instFullLightDiagramProfiniteLightDiagramToProfinite, Profinite.injective_of_finite, Stonean.instProjectiveProfiniteObjToProfinite, LightDiagram.comp_hom_hom_hom_apply, Profinite.presentation.epi_π, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, Profinite.exists_locallyConstant_finite_nonempty, Profinite.hasLimits, ProfiniteGrp.instPreservesLimitsProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Condensed.isoFinYoneda_inv_app, Profinite.exists_locallyConstant_fin_two, Profinite.effectiveEpiFamily_tfae, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, Profinite.Extend.functor_map, Condensed.locallyConstantIsoFinYoneda_hom_app, Condensed.equalizerCondition_profinite, Profinite.isIso_asLimitCone_lift, Condensed.lanPresheafIso_hom, Profinite.exists_hom

Theorems

NameKindAssumesProvesValidatesDepends On
compact_exists_isClopen_in_isOpen 📖mathematicalIsOpen
Set
Set.instMembership
IsClopen
Set.instHasSubset
—TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
isTopologicalBasis_isClopen
IsOpen.mem_nhds
exists_clopen_of_closed_subset_open 📖mathematicalIsOpen
Set
Set.instHasSubset
IsClopen—Set.mem_iUnion
Set.Finite.isClopen_biUnion
Finset.finite_toSet
Set.iUnion_coe_set
IsCompact.elim_finite_subcover
IsClosed.isCompact
IsClopen.isOpen
compact_exists_isClopen_in_isOpen
exists_clopen_partition_of_clopen_cover 📖mathematicalIsClosed
IsClopen
Set
Set.instHasSubset
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.univ
Set.iUnion—Finite.induction_empty_option
Set.InjOn.pairwiseDisjoint_image
Function.Injective.injOn
Equiv.injective
Set.image_univ
EquivLike.range_eq_univ
Equiv.apply_symm_apply
Function.Surjective.iUnion_comp
Equiv.surjective
PEmpty.instIsEmpty
Set.iUnion_of_empty
Set.instReflSubset
Option.some_injective
Set.PairwiseDisjoint.subset
IsOpen.sdiff
isClosed_iUnion_of_finite
Finite.of_fintype
Set.subset_diff
exists_clopen_of_closed_subset_open
subset_trans
Set.instIsTransSubset
Set.diff_subset
IsClopen.diff
Disjoint.mono_right
Disjoint.mono_left
Set.subset_iUnion_of_subset
isClopen_iUnion_of_finite
Set.mem_iUnion
Set.pairwiseDisjoint_iff
Set.inter_self
Set.subset_iUnion
Set.disjoint_sdiff_left
Set.disjoint_sdiff_right
instTotallySeparatedSpaceOfTotallyDisconnectedSpace 📖mathematical—TotallySeparatedSpace—loc_compact_t2_tot_disc_iff_tot_sep
isTopologicalBasis_isClopen 📖mathematical—TopologicalSpace.IsTopologicalBasis
setOf
Set
IsClopen
—TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
IsOpen.mem_nhds
Filter.HasBasis.mem_iff
nhds_basis_clopen
loc_compact_Haus_tot_disc_of_zero_dim 📖mathematical—TopologicalSpace.IsTopologicalBasis
setOf
Set
IsClopen
—TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
exists_compact_subset
IsOpen.preimage
continuous_subtype_val
isOpen_interior
CanLift.prf
Subtype.canLift
interior_subset
compact_exists_isClopen_in_isOpen
instT2SpaceSubtype
isCompact_iff_compactSpace
Subtype.totallyDisconnectedSpace
Topology.IsClosedEmbedding.isClosed_iff_image_isClosed
IsClosed.isClosedEmbedding_subtypeVal
IsCompact.isClosed
Topology.IsEmbedding.comp
Topology.IsEmbedding.subtypeVal
Set.range_comp
Subtype.range_coe
Subtype.image_preimage_coe
Set.inter_eq_self_of_subset_right
Set.image_comp
Topology.IsOpenEmbedding.isOpenMap
Subtype.coe_eta
Set.Subset.trans
Subtype.coe_preimage_self
loc_compact_t2_tot_disc_iff_tot_sep 📖mathematical—TotallyDisconnectedSpace
TotallySeparatedSpace
—totallySeparatedSpace_of_t0_of_basis_clopen
T1Space.t0Space
T2Space.t1Space
loc_compact_Haus_tot_disc_of_zero_dim
TotallySeparatedSpace.totallyDisconnectedSpace
nhds_basis_clopen 📖mathematical—Filter.HasBasis
Set
nhds
Set.instMembership
IsClopen
—totallyDisconnectedSpace_iff_connectedComponent_singleton
IsClopen.inter
Set.inter_subset_left
Set.inter_subset_right
Set.mem_singleton_iff
connectedComponent_eq_iInter_isClopen
exists_subset_nhds_of_compactSpace
isClopen_univ
Set.mem_univ
mem_nhds_iff
totallySeparatedSpace_of_t0_of_basis_clopen 📖mathematicalTopologicalSpace.IsTopologicalBasis
setOf
Set
IsClopen
TotallySeparatedSpace—IsClopen.isOpen
IsClopen.compl
Set.notMem_subset
Eq.superset
Set.instReflSubset
Set.union_compl_self
disjoint_compl_right
TopologicalSpace.IsTopologicalBasis.isOpen_iff
Set.union_comm
disjoint_compl_left
exists_isOpen_xor'_mem
totallySeparatedSpace_of_t1_of_basis_clopen 📖mathematicalTopologicalSpace.IsTopologicalBasis
setOf
Set
IsClopen
TotallySeparatedSpace—totallySeparatedSpace_of_t0_of_basis_clopen

---

← Back to Index