Regular
π Source: Mathlib/Topology/Separation/Regular.lean
Statistics
Affine.Simplex
Definitions
| Name | Category | Theorems |
|---|---|---|
Regular π | MathDef |
CategoryTheory
Definitions
| Name | Category | Theorems |
|---|---|---|
Regular π | CompData | β |
CompletelyNormalSpace
Theorems
ConnectedComponents
Theorems
Filter.HasBasis
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
nhds_closure π | mathematical | Filter.HasBasisnhds | closure | β | lift'_closurelift'_nhds_closure |
Homeomorph
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
normalSpace π | mathematical | β | NormalSpace | β | Topology.IsClosedEmbedding.normalSpaceisClosedEmbedding |
t25Space π | mathematical | β | T25Space | β | Topology.IsEmbedding.t25SpaceisEmbedding |
t3Space π | mathematical | β | T3Space | β | Topology.IsEmbedding.t3SpaceisEmbedding |
t4Space π | mathematical | β | T4Space | β | Topology.IsClosedEmbedding.t4SpaceisClosedEmbedding |
t5Space π | mathematical | β | T5Space | β | Topology.IsEmbedding.t5SpaceTopology.IsClosedEmbedding.toIsEmbeddingisClosedEmbedding |
IsClosed
Theorems
IsCompact
Theorems
NormalSpace
Theorems
RegularSpace
Theorems
SeparatedNhds
Theorems
SeparationQuotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instNormalSpace π | mathematical | β | NormalSpaceSeparationQuotientinstTopologicalSpaceSeparationQuotient | β | separatedNhds_iff_disjointFilter.disjoint_comap_iffcomap_mk_nhdsSetdisjoint_nhdsSet_nhdsSetIsClosed.preimageDisjoint.preimage |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instT25Space π | mathematical | β | T25SpaceinstTopologicalSpaceSubtype | β | Topology.IsEmbedding.t25SpaceTopology.IsEmbedding.subtypeVal |
t3Space π | mathematical | β | T3SpaceinstTopologicalSpaceSubtype | β | Topology.IsEmbedding.t3SpaceTopology.IsEmbedding.subtypeVal |
T25Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_injective_continuous π | mathematical | Continuous | T25Space | β | Filter.Tendsto.disjointtendsto_lift'_closure_nhdst2_5 |
t2Space π | mathematical | β | T2Space | β | t2Space_iff_disjoint_nhdsDisjoint.monoFilter.le_lift'_closuredisjoint_lift'_closure_nhds |
t2_5 π | mathematical | β | DisjointFilterFilter.instPartialOrderBoundedOrder.toOrderBotPreorder.toLEPartialOrder.toPreorderCompleteLattice.toBoundedOrderFilter.instCompleteLatticeFilterFilter.lift'nhdsclosure | β | β |
T3Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t25Space π | mathematical | β | T25Space | β | lift'_nhds_closuretoRegularSpacet0Space_iff_or_notMem_closuretoT0SpacenhdsSet_singletonDisjoint.symm |
toRegularSpace π | mathematical | β | RegularSpace | β | β |
toT0Space π | mathematical | β | T0Space | β | β |
T4Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
t3Space π | mathematical | β | T3Space | β | T1Space.t0SpacetoT1SpacenhdsSet_singletonSeparatedNhds.disjoint_nhdsSetnormal_separationtoNormalSpaceisClosed_singletonSet.disjoint_singleton_right |
toNormalSpace π | mathematical | β | NormalSpace | β | β |
toT1Space π | mathematical | β | T1Space | β | β |
T5Space
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_forall_isOpen_t4Space π | mathematical | T4SpaceSet.EleminstTopologicalSpaceSubtypeSetSet.instMembership | T5Space | β | t5Space_iff_forall_isOpen_t4Space |
of_forall_t4Space π | mathematical | T4SpaceSet.EleminstTopologicalSpaceSubtypeSetSet.instMembership | T5Space | β | t5Space_iff_forall_t4Space |
toCompletelyNormalSpace π | mathematical | β | CompletelyNormalSpace | β | β |
toT1Space π | mathematical | β | T1Space | β | β |
toT4Space π | mathematical | β | T4Space | β | toT1SpaceCompletelyNormalSpace.toNormalSpacetoCompletelyNormalSpace |
TopologicalSpace.IsTopologicalBasis
Theorems
Topology.IsClosedEmbedding
Theorems
Topology.IsEmbedding
Theorems
Topology.IsInducing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
regularSpace π | mathematical | Topology.IsInducing | RegularSpace | β | RegularSpace.of_hasBasisnhds_eq_comapFilter.HasBasis.comapclosed_nhds_basisIsClosed.preimagecontinuous |
ULift
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instCompletelyNormalSpace π | mathematical | β | CompletelyNormalSpacetopologicalSpace | β | Topology.IsEmbedding.completelyNormalSpaceTopology.IsEmbedding.uliftDown |
instT3Space π | mathematical | β | T3SpacetopologicalSpace | β | Topology.IsEmbedding.t3SpaceTopology.IsEmbedding.uliftDown |
instT4Space π | mathematical | β | T4SpacetopologicalSpace | β | Topology.IsClosedEmbedding.t4SpaceTopology.IsClosedEmbedding.uliftDown |
instT5Space π | mathematical | β | T5SpacetopologicalSpace | β | Topology.IsEmbedding.t5SpaceTopology.IsEmbedding.uliftDown |
(root)
Definitions
Theorems
---