Documentation Verification Report

Regular

πŸ“ Source: Mathlib/Topology/Separation/Regular.lean

Statistics

MetricCount
DefinitionsRegular, Regular, CompletelyNormalSpace, NormalSpace, RegularSpace, T25Space, T3Space, T4Space, T5Space
9
Theoremscompletely_normal, of_forall_isOpen_normalSpace, of_forall_normalSpace, of_regularSpace_secondCountableTopology, toNormalSpace, t2, nhds_closure, normalSpace, t25Space, t3Space, t4Space, t5Space, HasSeparatingCover, closure_eq_nhdsKer, exists_isOpen_closure_subset, lift'_closure_nhdsSet, nhdsSet_basis_isCompact_isClosed, normal, of_compactSpace_r1Space, of_regularSpace_lindelofSpace, of_regularSpace_secondCountableTopology, inf, of_exists_mem_nhds_isClosed_subset, of_hasBasis, of_lift'_closure, of_lift'_closure_le, regular, t3Space_iff_t0Space, of_isCompact_isClosed, instNormalSpace, instT25Space, t3Space, of_injective_continuous, t2Space, t2_5, t25Space, toRegularSpace, toT0Space, t3Space, toNormalSpace, toT1Space, of_forall_isOpen_t4Space, of_forall_t4Space, toCompletelyNormalSpace, toT1Space, toT4Space, exists_closure_subset, nhds_basis_closure, normalSpace, t4Space, completelyNormalSpace, t25Space, t3Space, t5Space, regularSpace, instCompletelyNormalSpace, instT3Space, instT4Space, instT5Space, closed_nhds_basis, completelyNormalSpace_iff_forall_isOpen_normalSpace, completelyNormalSpace_iff_forall_normalSpace, connectedComponent_eq_iInter_isClopen, disjoint_lift'_closure_nhds, disjoint_nested_nhds, disjoint_nested_nhds_of_not_inseparable, disjoint_nhdsSet_nhds, disjoint_nhdsSet_nhdsSet, disjoint_nhds_nhdsSet, exists_compact_closed_between, exists_mem_nhds_isClosed_subset, exists_nhds_disjoint_closure, exists_open_between_and_isCompact_closure, exists_open_nhds_disjoint_closure, hasBasis_nhds_closure, hasBasis_opens_closure, instCompletelyNormalSpaceSubtype, instR1Space, instRegularSpaceForall, instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space, instRegularSpaceProd, instRegularSpaceSubtype, instT3Space, instT3SpaceForall, instT3SpaceProd, instT3SpaceSeparationQuotientOfRegularSpace, instT4SpaceOfT1SpaceOfNormalSpace, instT5SpaceSeparationQuotientOfCompletelyNormalSpaceOfR0Space, instT5SpaceSubtype, lift'_nhds_closure, normal_exists_closure_subset, normal_separation, regularSpace_TFAE, regularSpace_generateFrom, regularSpace_iInf, regularSpace_iff, regularSpace_induced, regularSpace_sInf, t5Space_iff_forall_isOpen_t4Space, t5Space_iff_forall_t4Space
100
Total109

Affine.Simplex

Definitions

NameCategoryTheorems
Regular πŸ“–MathDef
1 mathmath: regular_reindex_iff

CategoryTheory

Definitions

NameCategoryTheorems
Regular πŸ“–CompDataβ€”

CompletelyNormalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
completely_normal πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
β€”β€”
of_forall_isOpen_normalSpace πŸ“–mathematicalNormalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
CompletelyNormalSpaceβ€”completelyNormalSpace_iff_forall_isOpen_normalSpace
of_forall_normalSpace πŸ“–mathematicalNormalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
CompletelyNormalSpaceβ€”completelyNormalSpace_iff_forall_normalSpace
of_regularSpace_secondCountableTopology πŸ“–mathematicalβ€”CompletelyNormalSpaceβ€”of_forall_normalSpace
NormalSpace.of_regularSpace_secondCountableTopology
instRegularSpaceSubtype
TopologicalSpace.Subtype.secondCountableTopology
toNormalSpace πŸ“–mathematicalβ€”NormalSpaceβ€”separatedNhds_iff_disjoint
completely_normal
IsClosed.closure_eq

ConnectedComponents

Theorems

NameKindAssumesProvesValidatesDepends On
t2 πŸ“–mathematicalβ€”T2Space
ConnectedComponents
instTopologicalSpace
β€”Function.Surjective.forallβ‚‚
surjective_coe
connectedComponent_disjoint
coe_ne_coe
IsCompact.elim_finite_subfamily_closed
IsClosed.isCompact
isClosed_connectedComponent
Set.disjoint_iff_inter_eq_empty
connectedComponent_eq_iInter_isClopen
isClopen_biInter_finset
Set.subset_iInterβ‚‚
IsClopen.connectedComponent_subset
IsClopen.biUnion_connectedComponent_eq
connectedComponents_preimage_image
IsClopen.isOpen
IsClopen.compl
Topology.IsQuotientMap.isClopen_preimage
isQuotientMap_coe
Set.Nonempty.ne_empty
mem_connectedComponent
disjoint_compl_left

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_closure πŸ“–mathematicalFilter.HasBasis
nhds
closureβ€”lift'_closure
lift'_nhds_closure

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
normalSpace πŸ“–mathematicalβ€”NormalSpaceβ€”Topology.IsClosedEmbedding.normalSpace
isClosedEmbedding
t25Space πŸ“–mathematicalβ€”T25Spaceβ€”Topology.IsEmbedding.t25Space
isEmbedding
t3Space πŸ“–mathematicalβ€”T3Spaceβ€”Topology.IsEmbedding.t3Space
isEmbedding
t4Space πŸ“–mathematicalβ€”T4Spaceβ€”Topology.IsClosedEmbedding.t4Space
isClosedEmbedding
t5Space πŸ“–mathematicalβ€”T5Spaceβ€”Topology.IsEmbedding.t5Space
Topology.IsClosedEmbedding.toIsEmbedding
isClosedEmbedding

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
HasSeparatingCover πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
HasSeparatingCoverβ€”isEmpty_or_nonempty
Set.subset_eq_empty
Set.univ_eq_empty_iff
hasSeparatingCovers_iff_separatedNhds
SeparatedNhds.empty_left
List.TFAE.out
regularSpace_TFAE
compl_mem_nhds
Set.disjoint_left
isOpen_interior
closure_subset_iff
interior_subset
mem_interior_iff_mem_nhds
isOpen_empty
SeparatedNhds.disjoint_closure_left
IsLindelof.indexed_countable_subcover
isLindelof
Set.mem_iUnion

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq_nhdsKer πŸ“–mathematicalIsCompactclosure
nhdsKer
β€”subset_antisymm
Set.instAntisymmSubset
nhdsKer.eq_1
lift'_closure_nhdsSet
iInf_congr_Prop
Filter.ker_iInf
Set.iInter_congr_Prop
Filter.ker_principal
Filter.disjoint_iff
disjoint_nhdsSet_nhds
Set.disjoint_iff
mem_of_mem_nhds
exists_isOpen_closure_subset πŸ“–mathematicalIsCompact
Set
Filter
Filter.instMembership
nhdsSet
IsOpen
Set.instHasSubset
closure
β€”disjoint_nhdsSet_left
closure_compl
Filter.HasBasis.disjoint_iff
hasBasis_nhdsSet
Set.Subset.trans
closure_minimal
Disjoint.subset_compl_right
IsOpen.isClosed_compl
Set.compl_subset_comm
lift'_closure_nhdsSet πŸ“–mathematicalIsCompactFilter.lift'
nhdsSet
closure
β€”le_antisymm
exists_isOpen_closure_subset
Filter.mem_of_superset
Filter.mem_lift'
IsOpen.mem_nhdsSet
Filter.le_lift'_closure
nhdsSet_basis_isCompact_isClosed πŸ“–mathematicalIsCompactFilter.HasBasis
Set
nhdsSet
Filter
Filter.instMembership
IsClosed
β€”Filter.hasBasis_self
Filter.HasBasis.forall_iff
hasBasis_nhdsSet
exists_compact_closed_between
subset_interior_iff_mem_nhdsSet

NormalSpace

Theorems

NameKindAssumesProvesValidatesDepends On
normal πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”β€”
of_compactSpace_r1Space πŸ“–mathematicalβ€”NormalSpaceβ€”SeparatedNhds.of_isCompact_isCompact_isClosed
IsClosed.isCompact
of_regularSpace_lindelofSpace πŸ“–mathematicalβ€”NormalSpaceβ€”hasSeparatingCovers_iff_separatedNhds
IsClosed.HasSeparatingCover
Disjoint.symm
of_regularSpace_secondCountableTopology πŸ“–mathematicalβ€”NormalSpaceβ€”of_regularSpace_lindelofSpace
HereditarilyLindelof.to_Lindelof
SecondCountableTopology.toHereditarilyLindelof

RegularSpace

Theorems

NameKindAssumesProvesValidatesDepends On
inf πŸ“–mathematicalβ€”RegularSpace
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”inf_eq_iInf
regularSpace_iInf
of_exists_mem_nhds_isClosed_subset πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
IsClosed
Set.instHasSubset
RegularSpaceβ€”List.TFAE.out
regularSpace_TFAE
of_hasBasis πŸ“–mathematicalFilter.HasBasis
nhds
IsClosed
RegularSpaceβ€”of_lift'_closure
Filter.HasBasis.lift'_closure_eq_self
of_lift'_closure πŸ“–mathematicalFilter.lift'
nhds
closure
RegularSpaceβ€”List.TFAE.out
regularSpace_TFAE
of_lift'_closure_le πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.lift'
nhds
closure
RegularSpaceβ€”List.TFAE.out
regularSpace_TFAE
regular πŸ“–mathematicalSet
Set.instMembership
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”β€”
t3Space_iff_t0Space πŸ“–mathematicalβ€”T3Space
T0Space
β€”T3Space.toT0Space
instT3Space

SeparatedNhds

Theorems

NameKindAssumesProvesValidatesDepends On
of_isCompact_isClosed πŸ“–mathematicalIsCompact
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”IsCompact.disjoint_nhdsSet_left
IsClosed.closure_eq

SeparationQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
instNormalSpace πŸ“–mathematicalβ€”NormalSpace
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”separatedNhds_iff_disjoint
Filter.disjoint_comap_iff
comap_mk_nhdsSet
disjoint_nhdsSet_nhdsSet
IsClosed.preimage
Disjoint.preimage

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
instT25Space πŸ“–mathematicalβ€”T25Space
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.t25Space
Topology.IsEmbedding.subtypeVal
t3Space πŸ“–mathematicalβ€”T3Space
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.t3Space
Topology.IsEmbedding.subtypeVal

T25Space

Theorems

NameKindAssumesProvesValidatesDepends On
of_injective_continuous πŸ“–mathematicalContinuousT25Spaceβ€”Filter.Tendsto.disjoint
tendsto_lift'_closure_nhds
t2_5
t2Space πŸ“–mathematicalβ€”T2Spaceβ€”t2Space_iff_disjoint_nhds
Disjoint.mono
Filter.le_lift'_closure
disjoint_lift'_closure_nhds
t2_5 πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.lift'
nhds
closure
β€”β€”

T3Space

Theorems

NameKindAssumesProvesValidatesDepends On
t25Space πŸ“–mathematicalβ€”T25Spaceβ€”lift'_nhds_closure
toRegularSpace
t0Space_iff_or_notMem_closure
toT0Space
nhdsSet_singleton
Disjoint.symm
toRegularSpace πŸ“–mathematicalβ€”RegularSpaceβ€”β€”
toT0Space πŸ“–mathematicalβ€”T0Spaceβ€”β€”

T4Space

Theorems

NameKindAssumesProvesValidatesDepends On
t3Space πŸ“–mathematicalβ€”T3Spaceβ€”T1Space.t0Space
toT1Space
nhdsSet_singleton
SeparatedNhds.disjoint_nhdsSet
normal_separation
toNormalSpace
isClosed_singleton
Set.disjoint_singleton_right
toNormalSpace πŸ“–mathematicalβ€”NormalSpaceβ€”β€”
toT1Space πŸ“–mathematicalβ€”T1Spaceβ€”β€”

T5Space

Theorems

NameKindAssumesProvesValidatesDepends On
of_forall_isOpen_t4Space πŸ“–mathematicalT4Space
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
T5Spaceβ€”t5Space_iff_forall_isOpen_t4Space
of_forall_t4Space πŸ“–mathematicalT4Space
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
T5Spaceβ€”t5Space_iff_forall_t4Space
toCompletelyNormalSpace πŸ“–mathematicalβ€”CompletelyNormalSpaceβ€”β€”
toT1Space πŸ“–mathematicalβ€”T1Spaceβ€”β€”
toT4Space πŸ“–mathematicalβ€”T4Spaceβ€”toT1Space
CompletelyNormalSpace.toNormalSpace
toCompletelyNormalSpace

TopologicalSpace.IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
exists_closure_subset πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set
Filter
Filter.instMembership
nhds
Set.instMembership
Set.instHasSubset
closure
β€”Filter.HasBasis.mem_iff
Filter.HasBasis.nhds_closure
nhds_hasBasis
nhds_basis_closure πŸ“–mathematicalTopologicalSpace.IsTopologicalBasisFilter.HasBasis
Set
nhds
Set.instMembership
closure
β€”Filter.HasBasis.nhds_closure
nhds_hasBasis

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
normalSpace πŸ“–mathematicalTopology.IsClosedEmbeddingNormalSpaceβ€”NormalSpace.normal
isClosedMap
Set.disjoint_image_of_injective
Topology.IsEmbedding.injective
toIsEmbedding
SeparatedNhds.mono
SeparatedNhds.preimage
continuous
Set.subset_preimage_image
t4Space πŸ“–mathematicalTopology.IsClosedEmbeddingT4Spaceβ€”Topology.IsEmbedding.t1Space
T4Space.toT1Space
isEmbedding
normalSpace
T4Space.toNormalSpace

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
completelyNormalSpace πŸ“–mathematicalTopology.IsEmbeddingCompletelyNormalSpaceβ€”Topology.IsInducing.nhdsSet_eq_comap
isInducing
Filter.disjoint_comap
CompletelyNormalSpace.completely_normal
Set.subset_compl_iff_disjoint_left
Set.image_subset_iff
Set.preimage_compl
closure_eq_preimage_closure_image
Set.subset_compl_iff_disjoint_right
t25Space πŸ“–mathematicalTopology.IsEmbeddingT25Spaceβ€”T25Space.of_injective_continuous
injective
continuous
t3Space πŸ“–mathematicalTopology.IsEmbeddingT3Spaceβ€”t0Space
T3Space.toT0Space
Topology.IsInducing.regularSpace
T3Space.toRegularSpace
isInducing
t5Space πŸ“–mathematicalTopology.IsEmbeddingT5Spaceβ€”t1Space
T5Space.toT1Space
completelyNormalSpace
T5Space.toCompletelyNormalSpace
CompletelyNormalSpace.completely_normal

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
regularSpace πŸ“–mathematicalTopology.IsInducingRegularSpaceβ€”RegularSpace.of_hasBasis
nhds_eq_comap
Filter.HasBasis.comap
closed_nhds_basis
IsClosed.preimage
continuous

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instCompletelyNormalSpace πŸ“–mathematicalβ€”CompletelyNormalSpace
topologicalSpace
β€”Topology.IsEmbedding.completelyNormalSpace
Topology.IsEmbedding.uliftDown
instT3Space πŸ“–mathematicalβ€”T3Space
topologicalSpace
β€”Topology.IsEmbedding.t3Space
Topology.IsEmbedding.uliftDown
instT4Space πŸ“–mathematicalβ€”T4Space
topologicalSpace
β€”Topology.IsClosedEmbedding.t4Space
Topology.IsClosedEmbedding.uliftDown
instT5Space πŸ“–mathematicalβ€”T5Space
topologicalSpace
β€”Topology.IsEmbedding.t5Space
Topology.IsEmbedding.uliftDown

(root)

Definitions

NameCategoryTheorems
CompletelyNormalSpace πŸ“–CompData
18 mathmath: CompletelyNormalSpace.of_regularSpace_secondCountableTopology, T5Space.toCompletelyNormalSpace, completelyNormalSpace_iff_forall_normalSpace, instCompletelyNormalSpaceSubtype, UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity, PerfectlyNormalSpace.toCompletelyNormalSpace, DomAddAct.instCompletelyNormalSpace, instCompletelyNormalSpaceOfIsUpperSet, OrderTopology.completelyNormalSpace, instCompletelyNormalSpaceProp, ULift.instCompletelyNormalSpace, CompletelyNormalSpace.of_forall_isOpen_normalSpace, instCompletelyNormalSpaceOfIsLowerSet, DomMulAct.instCompletelyNormalSpace, UniformSpace.completelyNormalSpace_of_hasAntitoneBasis, completelyNormalSpace_iff_forall_isOpen_normalSpace, Topology.IsEmbedding.completelyNormalSpace, CompletelyNormalSpace.of_forall_normalSpace
NormalSpace πŸ“–CompData
16 mathmath: SeparationQuotient.instNormalSpace, NormalSpace.of_regularSpace_secondCountableTopology, PerfectlyNormalSpace.toNormalSpace, completelyNormalSpace_iff_forall_normalSpace, DomMulAct.instNormalSpace, OnePoint.instNormalSpaceOfWeaklyLocallyCompactSpaceOfR1Space, T4Space.toNormalSpace, CompletelyNormalSpace.toNormalSpace, Topology.IsClosedEmbedding.normalSpace, Homeomorph.normalSpace, NormalSpace.of_regularSpace_lindelofSpace, IsClosed.not_normal_of_continuum_le_mk, completelyNormalSpace_iff_forall_isOpen_normalSpace, NormalSpace.of_compactSpace_r1Space, instNormalSpaceOfPseudoMetrizableSpace, DomAddAct.instNormalSpace
RegularSpace πŸ“–CompData
23 mathmath: DomMulAct.instRegularSpace, instRegularSpaceSubtype, IsTopologicalAddGroup.regularSpace, RegularSpace.of_exists_mem_nhds_isClosed_subset, RegularSpace.of_hasBasis, TopologicalSpace.PseudoMetrizableSpace.regularSpace, RegularSpace.inf, UniformSpace.to_regularSpace, regularSpace_induced, regularSpace_generateFrom, DomAddAct.instRegularSpace, ContinuousMap.instRegularSpace, regularSpace_iff, regularSpace_TFAE, RegularSpace.of_lift'_closure_le, ContinuousMapZero.instRegularSpace, RegularSpace.of_lift'_closure, Topology.IsInducing.regularSpace, instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space, CompletelyRegularSpace.instRegularSpace, instRegularSpaceProd, T3Space.toRegularSpace, IsTopologicalGroup.regularSpace
T25Space πŸ“–CompData
7 mathmath: Topology.IsEmbedding.t25Space, DomMulAct.instT25Space, Subtype.instT25Space, T3Space.t25Space, T25Space.of_injective_continuous, DomAddAct.instT25Space, Homeomorph.t25Space
T3Space πŸ“–CompData
24 mathmath: QuotientAddGroup.instT3Space, DomAddAct.instT3Space, DomMulAct.instT3Space, Submodule.t3_quotient_of_isClosed, ContDiffMapSupportedIn.instT3Space, instT3SpaceSeparationQuotientOfRegularSpace, RegularSpace.t3Space_iff_t0Space, instT3Space, ULift.instT3Space, Topology.IsEmbedding.t3Space, Subtype.t3Space, QuotientGroup.instT3Space, ContinuousMap.instT3Space, T35Space.instT3space, ContinuousAlternatingMap.instT3Space, ContinuousMultilinearMap.instT3Space, ContinuousLinearMapWOT.instT3Space, UpperHalfPlane.instT3Space, CStarMatrix.instT3Space, T4Space.t3Space, Homeomorph.t3Space, instT3SpaceProd, ContinuousMapZero.instT3Space, TestFunction.instT3Space
T4Space πŸ“–CompData
17 mathmath: instT4SpaceOfT1SpaceOfNormalSpace, ENNReal.instT4Space, DomAddAct.instT4Space, Metric.t4Space, UpperHalfPlane.instT4Space, Topology.IsClosedEmbedding.t4Space, exists_opensMeasurableSpace_of_countablySeparated, t5Space_iff_forall_t4Space, T4Space.of_paracompactSpace_t2Space, Homeomorph.t4Space, t5Space_iff_forall_isOpen_t4Space, EMetric.t4Space, T5Space.toT4Space, instT4SpaceOfMetrizableSpace, DomMulAct.instT4Space, exists_borelSpace_of_countablyGenerated_of_separatesPoints, ULift.instT4Space
T5Space πŸ“–CompData
16 mathmath: T6Space.toT5Space, Topology.IsEmbedding.t5Space, EReal.instT5Space, DomMulAct.instT5Space, ENNReal.instT5Space, OrderTopology.t5Space, Homeomorph.t5Space, T5Space.of_forall_t4Space, WithZeroTopology.t5Space, t5Space_iff_forall_t4Space, DomAddAct.instT5Space, instT5SpaceSeparationQuotientOfCompletelyNormalSpaceOfR0Space, T5Space.of_forall_isOpen_t4Space, instT5SpaceSubtype, t5Space_iff_forall_isOpen_t4Space, ULift.instT5Space

Theorems

NameKindAssumesProvesValidatesDepends On
closed_nhds_basis πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsClosed
β€”Filter.hasBasis_self
exists_mem_nhds_isClosed_subset
completelyNormalSpace_iff_forall_isOpen_normalSpace πŸ“–mathematicalβ€”CompletelyNormalSpace
NormalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”CompletelyNormalSpace.toNormalSpace
instCompletelyNormalSpaceSubtype
IsClosed.isOpen_compl
IsClosed.inter
isClosed_closure
Set.disjoint_left
normal_separation
IsClosed.preimage
continuous_subtype_val
Topology.IsInducing.isOpen_iff
Topology.IsInducing.subtypeVal
separatedNhds_iff_disjoint
IsOpen.inter
Set.inter_comm
Subtype.preimage_val_subset_preimage_val_iff
subset_closure
Disjoint.notMem_of_mem_left
completelyNormalSpace_iff_forall_normalSpace πŸ“–mathematicalβ€”CompletelyNormalSpace
NormalSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”CompletelyNormalSpace.toNormalSpace
instCompletelyNormalSpaceSubtype
completelyNormalSpace_iff_forall_isOpen_normalSpace
connectedComponent_eq_iInter_isClopen πŸ“–mathematicalβ€”connectedComponent
Set.iInter
Set
IsClopen
Set.instMembership
β€”Set.Subset.antisymm
connectedComponent_subset_iInter_isClopen
IsPreconnected.subset_connectedComponent
isClosed_iInter
isPreconnected_iff_subset_of_fully_disjoint_closed
normal_separation
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
T2Space.r1Space
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
IsCompact.inter_iInter_nonempty
IsClosed.isCompact
IsOpen.isClosed_compl
IsOpen.union
Set.not_disjoint_iff_nonempty_inter
Set.disjoint_compl_left_iff_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.union_subset_union
isClopen_biInter_finset
Set.mem_iInterβ‚‚
Set.disjoint_iff_inter_eq_empty
Set.not_nonempty_iff_eq_empty
isClopen_inter_of_disjoint_cover_clopen
Set.union_comm
Disjoint.symm
Set.Subset.trans
Set.iInter_subset
Set.mem_inter
Set.inter_subset_right
Disjoint.left_le_of_le_sup_right
Disjoint.mono
Set.mem_iInter
Disjoint.left_le_of_le_sup_left
disjoint_lift'_closure_nhds πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
Filter.lift'
nhds
closure
β€”Filter.NeBot.ne
nhds_neBot
T25Space.t2_5
disjoint_nested_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
IsClosed
IsOpen
Set.instHasSubset
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”disjoint_nested_nhds_of_not_inseparable
T3Space.toRegularSpace
Inseparable.eq
T3Space.toT0Space
disjoint_nested_nhds_of_not_inseparable πŸ“–mathematicalInseparableSet
Filter
Filter.instMembership
nhds
IsClosed
IsOpen
Set.instHasSubset
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”r1_separation
instR1Space
exists_mem_nhds_isClosed_subset
IsOpen.mem_nhds
Filter.mem_of_superset
disjoint_nhdsSet_nhds πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
Set
Set.instMembership
closure
β€”List.TFAE.out
regularSpace_TFAE
disjoint_nhdsSet_nhdsSet πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
β€”SeparatedNhds.disjoint_nhdsSet
normal_separation
disjoint_nhds_nhdsSet πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
nhdsSet
Set
Set.instMembership
closure
β€”disjoint_comm
disjoint_nhdsSet_nhds
exists_compact_closed_between πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
IsClosed
interior
β€”exists_compact_between
IsCompact.closure
instR1Space
isClosed_closure
HasSubset.Subset.trans
Set.instIsTransSubset
interior_mono
subset_closure
IsCompact.closure_subset_of_isOpen
exists_mem_nhds_isClosed_subset πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
IsClosed
Set.instHasSubset
β€”List.TFAE.out
regularSpace_TFAE
exists_nhds_disjoint_closure πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”Filter.HasBasis.disjoint_iff
Filter.HasBasis.lift'_closure
Filter.basis_sets
disjoint_lift'_closure_nhds
exists_open_between_and_isCompact_closure πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
closureβ€”exists_compact_closed_between
HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
interior_subset
le_of_eq
IsClosed.closure_eq
isOpen_interior
IsCompact.closure_of_subset
instR1Space
exists_open_nhds_disjoint_closure πŸ“–mathematicalβ€”Set
Set.instMembership
IsOpen
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”Filter.HasBasis.disjoint_iff
Filter.HasBasis.lift'_closure
nhds_basis_opens
disjoint_lift'_closure_nhds
hasBasis_nhds_closure πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
closure
β€”Filter.HasBasis.nhds_closure
Filter.basis_sets
hasBasis_opens_closure πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Set.instMembership
IsOpen
closure
β€”Filter.HasBasis.nhds_closure
nhds_basis_opens
instCompletelyNormalSpaceSubtype πŸ“–mathematicalβ€”CompletelyNormalSpace
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.completelyNormalSpace
Topology.IsEmbedding.subtypeVal
instR1Space πŸ“–mathematicalβ€”R1Spaceβ€”nhdsSet_singleton
disjoint_nhdsSet_nhds
specializes_iff_mem_closure
instRegularSpaceForall πŸ“–mathematicalRegularSpacePi.topologicalSpaceβ€”regularSpace_iInf
regularSpace_induced
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space πŸ“–mathematicalβ€”RegularSpaceβ€”RegularSpace.of_hasBasis
isCompact_isClosed_basis_nhds
instRegularSpaceProd πŸ“–mathematicalβ€”RegularSpace
instTopologicalSpaceProd
β€”RegularSpace.inf
regularSpace_induced
instRegularSpaceSubtype πŸ“–mathematicalβ€”RegularSpace
instTopologicalSpaceSubtype
β€”Topology.IsInducing.regularSpace
Topology.IsEmbedding.isInducing
Topology.IsEmbedding.subtypeVal
instT3Space πŸ“–mathematicalβ€”T3Spaceβ€”β€”
instT3SpaceForall πŸ“–mathematicalT3SpacePi.topologicalSpaceβ€”Pi.instT0Space
T3Space.toT0Space
instRegularSpaceForall
T3Space.toRegularSpace
instT3SpaceProd πŸ“–mathematicalβ€”T3Space
instTopologicalSpaceProd
β€”Prod.instT0Space
T3Space.toT0Space
instRegularSpaceProd
T3Space.toRegularSpace
instT3SpaceSeparationQuotientOfRegularSpace πŸ“–mathematicalβ€”T3Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”SeparationQuotient.instT0Space
Filter.disjoint_comap_iff
SeparationQuotient.comap_mk_nhdsSet
RegularSpace.regular
IsClosed.preimage
instT4SpaceOfT1SpaceOfNormalSpace πŸ“–mathematicalβ€”T4Spaceβ€”β€”
instT5SpaceSeparationQuotientOfCompletelyNormalSpaceOfR0Space πŸ“–mathematicalβ€”T5Space
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”List.TFAE.out
t1Space_TFAE
SeparationQuotient.t1Space_iff
Filter.disjoint_comap_iff
SeparationQuotient.comap_mk_nhdsSet
CompletelyNormalSpace.completely_normal
SeparationQuotient.preimage_mk_closure
Disjoint.preimage
instT5SpaceSubtype πŸ“–mathematicalβ€”T5Space
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.t5Space
Topology.IsEmbedding.subtypeVal
lift'_nhds_closure πŸ“–mathematicalβ€”Filter.lift'
nhds
closure
β€”Filter.HasBasis.lift'_closure_eq_self
closed_nhds_basis
normal_exists_closure_subset πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
closureβ€”Set.disjoint_left
normal_separation
isClosed_compl_iff
Set.Subset.trans
closure_minimal
Disjoint.le_bot
Set.compl_subset_comm
normal_separation πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SeparatedNhdsβ€”NormalSpace.normal
regularSpace_TFAE πŸ“–mathematicalβ€”List.TFAE
RegularSpace
β€”regularSpace_iff
Function.Surjective.forall
compl_surjective
forall_swap
Filter.HasBasis.disjoint_iff_right
nhds_basis_opens
interior_compl
Filter.HasBasis.le_basis_iff
Filter.HasBasis.lift'_closure
LE.le.antisymm
Filter.le_lift'_closure
Filter.HasBasis.mem_iff
Filter.basis_sets
Filter.mem_of_superset
subset_closure
isClosed_closure
mem_interior_iff_mem_nhds
Filter.disjoint_of_disjoint_of_mem
disjoint_compl_left
subset_interior_iff_mem_nhdsSet
IsOpen.interior_eq
IsClosed.isOpen_compl
Set.subset_compl_comm
mem_closure_iff_nhds_ne_bot
Disjoint.eq_bot
Disjoint.mono_right
principal_le_nhdsSet
Disjoint.symm
IsClosed.closure_eq
List.tfae_of_cycle
regularSpace_generateFrom πŸ“–mathematicalTopologicalSpace.generateFromRegularSpace
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
Compl.compl
Set
Set.instCompl
nhds
β€”RegularSpace.regular
IsOpen.isClosed_compl
TopologicalSpace.isOpen_generateFrom_of_mem
Set.notMem_compl_iff
Function.Involutive.surjective
compl_involutive
Set.compl_univ
nhdsSet_empty
Set.compl_sUnion
Set.sInter_image
Disjoint.mono
nhdsSet_mono
Set.iInterβ‚‚_subset
le_refl
isClosed_compl_iff
regularSpace_iInf πŸ“–mathematicalRegularSpaceiInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”regularSpace_sInf
Set.forall_mem_range
regularSpace_iff πŸ“–mathematicalβ€”RegularSpace
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”β€”
regularSpace_induced πŸ“–mathematicalβ€”RegularSpace
TopologicalSpace.induced
β€”Topology.IsInducing.regularSpace
Topology.IsInducing.induced
regularSpace_sInf πŸ“–mathematicalRegularSpaceInfSet.sInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”nhds_sInf
iInf_subtype''
Filter.HasBasis.iInf
closed_nhds_basis
RegularSpace.of_hasBasis
isClosed_iInter
IsClosed.mono
sInf_le
t5Space_iff_forall_isOpen_t4Space πŸ“–mathematicalβ€”T5Space
T4Space
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”T5Space.toT4Space
instT5SpaceSubtype
isOpen_univ
t1Space_of_injective_of_continuous
Set.mem_univ
continuous_id
T4Space.toT1Space
completelyNormalSpace_iff_forall_isOpen_normalSpace
T4Space.toNormalSpace
t5Space_iff_forall_t4Space πŸ“–mathematicalβ€”T5Space
T4Space
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”T5Space.toT4Space
instT5SpaceSubtype
t5Space_iff_forall_isOpen_t4Space

---

← Back to Index