Sequences
π Source: Mathlib/Topology/Sequences.lean
Statistics
CompactSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
tendsto_subseq π | mathematical | β | StrictMonoNat.instPreorderFilter.TendstoFilter.atTopnhds | β | SeqCompactSpace.tendsto_subseqFirstCountableTopology.seq_compact_of_compact |
Continuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
seqContinuous π | mathematical | Continuous | SeqContinuous | β | Filter.Tendsto.comptendsto |
FirstCountableTopology
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
frechetUrysohnSpace π | mathematical | β | FrechetUrysohnSpace | β | FrechetUrysohnSpace.of_seq_tendsto_imp_tendstoFilter.tendsto_iff_seq_tendstonhds_generated_countable |
seq_compact_of_compact π | mathematical | β | SeqCompactSpace | β | IsCompact.isSeqCompactisCompact_univ |
FrechetUrysohnSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_seq_tendsto_imp_tendsto π | mathematical | ContinuousAtsierpinskiSpace | FrechetUrysohnSpace | β | subset_seqClosureFilter.extraction_of_frequently_atTopFilter.Tendsto.compStrictMono.tendsto_atTop |
to_sequentialSpace π | mathematical | β | SequentialSpace | β | closure_eq_iff_isClosedseqClosure_eq_closureIsSeqClosed.seqClosure_eq |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSeqClosed π | mathematical | β | IsSeqClosed | β | mem_of_tendstoFilter.atTop_neBotSemilatticeSup.instIsDirectedOrderFilter.Eventually.of_forall |
IsCompact
Theorems
IsSeqClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
preimage π | mathematical | IsSeqClosedSeqContinuous | Set.preimage | β | β |
seqClosure_eq π | mathematical | IsSeqClosed | seqClosure | β | Set.Subset.antisymmsubset_seqClosure |
IsSeqCompact
Theorems
Quotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instSequentialSpace π | mathematical | β | SequentialSpaceinstTopologicalSpaceQuotient | β | Topology.IsQuotientMap.sequentialSpace |
SeqCompactSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
tendsto_subseq π | mathematical | β | StrictMonoNat.instPreorderFilter.TendstoFilter.atTopnhds | β | isSeqCompact_univSet.mem_univ |
SeqContinuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
continuous π | mathematical | SeqContinuous | Continuous | β | continuous_iff_isClosedIsSeqClosed.isClosedIsSeqClosed.preimageIsClosed.isSeqClosed |
SequentialSpace
Theorems
Sigma
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instSequentialSpace π | mathematical | SequentialSpace | instTopologicalSpaceSigma | β | SequentialSpace.iSupSequentialSpace.coinduced |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instFrechetUrysohnSpace π | mathematical | β | FrechetUrysohnSpaceinstTopologicalSpaceSubtype | β | Topology.IsInducing.frechetUrysohnSpaceTopology.IsInducing.subtypeVal |
Sum
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instSequentialSpace π | mathematical | β | SequentialSpaceinstTopologicalSpaceSum | β | SequentialSpace.supSequentialSpace.coinduced |
Topology.IsInducing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
frechetUrysohnSpace π | mathematical | Topology.IsInducing | FrechetUrysohnSpace | β | mem_closure_iff_seq_limitSet.mem_preimageclosure_eq_preimage_closure_imagetendsto_nhds_iff |
Topology.IsQuotientMap
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
sequentialSpace π | mathematical | Topology.IsQuotientMap | SequentialSpace | β | SequentialSpace.coinducedeq_coinduced |
UniformSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compactSpace_iff_seqCompactSpace π | mathematical | β | CompactSpaceSeqCompactSpace | β | compactSpace_iff_seqCompactSpace |
isCompact_iff_isSeqCompact π | mathematical | β | IsCompactIsSeqCompact | β | isCompact_iff_isSeqCompact |
(root)
Theorems
---