Documentation Verification Report

Sequences

πŸ“ Source: Mathlib/Topology/Sequences.lean

Statistics

MetricCount
Definitions0
Theoremstendsto_subseq, seqContinuous, frechetUrysohnSpace, seq_compact_of_compact, of_seq_tendsto_imp_tendsto, to_sequentialSpace, isSeqClosed, isSeqCompact, tendsto_subseq, tendsto_subseq', preimage, seqClosure_eq, exists_tendsto, exists_tendsto_of_frequently_mem, image, isCompact, isComplete, range, subseq_of_frequently_in, totallyBounded, instSequentialSpace, tendsto_subseq, continuous, coinduced, iSup, sup, instSequentialSpace, instFrechetUrysohnSpace, instSequentialSpace, frechetUrysohnSpace, sequentialSpace, compactSpace_iff_seqCompactSpace, isCompact_iff_isSeqCompact, compactSpace_iff_seqCompactSpace, continuous_iff_seqContinuous, isCompact_iff_isSeqCompact, isSeqClosed_iff, isSeqClosed_iff_isClosed, isSeqClosed_of_seqClosure_eq, mem_closure_iff_seq_limit, seqClosure_eq_closure, seqClosure_subset_closure, subset_seqClosure, tendsto_nhds_iff_seq_tendsto
44
Total44

CompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_subseq πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
β€”SeqCompactSpace.tendsto_subseq
FirstCountableTopology.seq_compact_of_compact

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
seqContinuous πŸ“–mathematicalContinuousSeqContinuousβ€”Filter.Tendsto.comp
tendsto

FirstCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
frechetUrysohnSpace πŸ“–mathematicalβ€”FrechetUrysohnSpaceβ€”FrechetUrysohnSpace.of_seq_tendsto_imp_tendsto
Filter.tendsto_iff_seq_tendsto
nhds_generated_countable
seq_compact_of_compact πŸ“–mathematicalβ€”SeqCompactSpaceβ€”IsCompact.isSeqCompact
isCompact_univ

FrechetUrysohnSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_seq_tendsto_imp_tendsto πŸ“–mathematicalContinuousAt
sierpinskiSpace
FrechetUrysohnSpaceβ€”subset_seqClosure
Filter.extraction_of_frequently_atTop
Filter.Tendsto.comp
StrictMono.tendsto_atTop
to_sequentialSpace πŸ“–mathematicalβ€”SequentialSpaceβ€”closure_eq_iff_isClosed
seqClosure_eq_closure
IsSeqClosed.seqClosure_eq

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isSeqClosed πŸ“–mathematicalβ€”IsSeqClosedβ€”mem_of_tendsto
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.of_forall

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isSeqCompact πŸ“–mathematicalIsCompactIsSeqCompactβ€”Filter.map_neBot
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.tendsto_principal
Filter.Eventually.of_forall
TopologicalSpace.FirstCountableTopology.tendsto_subseq
tendsto_subseq πŸ“–mathematicalIsCompact
Set
Set.instMembership
StrictMono
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
β€”isSeqCompact
tendsto_subseq' πŸ“–mathematicalIsCompact
Filter.Frequently
Set
Set.instMembership
Filter.atTop
Nat.instPreorder
StrictMono
Filter.Tendsto
nhds
β€”IsSeqCompact.subseq_of_frequently_in
isSeqCompact

IsSeqClosed

Theorems

NameKindAssumesProvesValidatesDepends On
preimage πŸ“–mathematicalIsSeqClosed
SeqContinuous
Set.preimageβ€”β€”
seqClosure_eq πŸ“–mathematicalIsSeqClosedseqClosureβ€”Set.Subset.antisymm
subset_seqClosure

IsSeqCompact

Theorems

NameKindAssumesProvesValidatesDepends On
exists_tendsto πŸ“–mathematicalIsSeqCompact
UniformSpace.toTopologicalSpace
Set
Set.instMembership
CauchySeq
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
β€”exists_tendsto_of_frequently_mem
Filter.Frequently.of_forall
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
exists_tendsto_of_frequently_mem πŸ“–mathematicalIsSeqCompact
UniformSpace.toTopologicalSpace
Filter.Frequently
Set
Set.instMembership
Filter.atTop
Nat.instPreorder
CauchySeq
Filter.Tendsto
nhds
β€”subseq_of_frequently_in
tendsto_nhds_of_cauchySeq_of_subseq
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
StrictMono.tendsto_atTop
image πŸ“–mathematicalSeqContinuous
IsSeqCompact
Set.imageβ€”Set.mem_image_of_mem
Filter.Tendsto.congr
isCompact πŸ“–mathematicalIsSeqCompactIsCompactβ€”isCompact_iff_totallyBounded_isComplete
totallyBounded
isComplete
TopologicalSpace.pseudoMetrizableSpaceUniformity_countably_generated
isComplete πŸ“–mathematicalIsSeqCompact
UniformSpace.toTopologicalSpace
IsCompleteβ€”Filter.exists_antitone_basis
refl_mem_uniformity
Filter.inter_mem
Filter.prod_mem_prod
Filter.le_principal_iff
Filter.HasBasis.mem_iff
Filter.HasBasis.prod_self
Filter.basis_sets
Set.iInterβ‚‚_subset
le_refl
Set.biInter_subset_biInter_left
LE.le.trans
Filter.biInter_mem
Set.finite_le_nat
HasSubset.Subset.trans
Set.instIsTransSubset
Set.prod_mono
Filter.HasBasis.cauchySeq_iff
Filter.HasAntitoneBasis.toHasBasis
exists_tendsto
Filter.HasBasis.ge_iff
nhds_basis_uniformity'
Filter.Eventually.exists
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.and
Filter.eventually_ge_atTop
UniformSpace.ball_mem_nhds
Filter.mem_of_superset
Filter.nonempty_of_mem
comp_mem_uniformity_sets
Filter.HasAntitoneBasis.mem
range πŸ“–mathematicalSeqContinuousIsSeqCompact
Set.range
β€”Set.image_univ
image
SeqCompactSpace.isSeqCompact_univ
subseq_of_frequently_in πŸ“–mathematicalIsSeqCompact
Filter.Frequently
Set
Set.instMembership
Filter.atTop
Nat.instPreorder
StrictMono
Filter.Tendsto
nhds
β€”Filter.extraction_of_frequently_atTop
StrictMono.comp
totallyBounded πŸ“–mathematicalIsSeqCompact
UniformSpace.toTopologicalSpace
TotallyBoundedβ€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
Set.seq_of_forall_finite_exists
CauchySeq.mem_entourage
Filter.Tendsto.cauchySeq
le_rfl

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
instSequentialSpace πŸ“–mathematicalβ€”SequentialSpace
instTopologicalSpaceQuotient
β€”Topology.IsQuotientMap.sequentialSpace

SeqCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_subseq πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
Filter.Tendsto
Filter.atTop
nhds
β€”isSeqCompact_univ
Set.mem_univ

SeqContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
continuous πŸ“–mathematicalSeqContinuousContinuousβ€”continuous_iff_isClosed
IsSeqClosed.isClosed
IsSeqClosed.preimage
IsClosed.isSeqClosed

SequentialSpace

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced πŸ“–mathematicalβ€”SequentialSpace
TopologicalSpace.coinduced
β€”isClosed_coinduced
IsSeqClosed.isClosed
IsSeqClosed.preimage
Continuous.seqContinuous
continuous_coinduced_rng
iSup πŸ“–mathematicalSequentialSpaceiSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”isClosed_iSup_iff
IsSeqClosed.isClosed
Filter.Tendsto.mono_right
nhds_mono
le_iSup
sup πŸ“–mathematicalβ€”SequentialSpace
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sup_eq_iSup
iSup

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
instSequentialSpace πŸ“–mathematicalSequentialSpaceinstTopologicalSpaceSigmaβ€”SequentialSpace.iSup
SequentialSpace.coinduced

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
instFrechetUrysohnSpace πŸ“–mathematicalβ€”FrechetUrysohnSpace
instTopologicalSpaceSubtype
β€”Topology.IsInducing.frechetUrysohnSpace
Topology.IsInducing.subtypeVal

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
instSequentialSpace πŸ“–mathematicalβ€”SequentialSpace
instTopologicalSpaceSum
β€”SequentialSpace.sup
SequentialSpace.coinduced

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
frechetUrysohnSpace πŸ“–mathematicalTopology.IsInducingFrechetUrysohnSpaceβ€”mem_closure_iff_seq_limit
Set.mem_preimage
closure_eq_preimage_closure_image
tendsto_nhds_iff

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
sequentialSpace πŸ“–mathematicalTopology.IsQuotientMapSequentialSpaceβ€”SequentialSpace.coinduced
eq_coinduced

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_iff_seqCompactSpace πŸ“–mathematicalβ€”CompactSpace
SeqCompactSpace
β€”compactSpace_iff_seqCompactSpace
isCompact_iff_isSeqCompact πŸ“–mathematicalβ€”IsCompact
IsSeqCompact
β€”isCompact_iff_isSeqCompact

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_iff_seqCompactSpace πŸ“–mathematicalβ€”CompactSpace
SeqCompactSpace
β€”β€”
continuous_iff_seqContinuous πŸ“–mathematicalβ€”Continuous
SeqContinuous
β€”Continuous.seqContinuous
SeqContinuous.continuous
isCompact_iff_isSeqCompact πŸ“–mathematicalβ€”IsCompact
IsSeqCompact
β€”IsCompact.isSeqCompact
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
IsSeqCompact.isCompact
isSeqClosed_iff πŸ“–mathematicalβ€”IsSeqClosed
seqClosure
β€”IsSeqClosed.seqClosure_eq
isSeqClosed_of_seqClosure_eq
isSeqClosed_iff_isClosed πŸ“–mathematicalβ€”IsSeqClosed
IsClosed
β€”IsSeqClosed.isClosed
IsClosed.isSeqClosed
isSeqClosed_of_seqClosure_eq πŸ“–mathematicalseqClosureIsSeqClosedβ€”β€”
mem_closure_iff_seq_limit πŸ“–mathematicalβ€”Set
Set.instMembership
closure
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
β€”seqClosure_eq_closure
seqClosure_eq_closure πŸ“–mathematicalβ€”seqClosure
closure
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
seqClosure_subset_closure
FrechetUrysohnSpace.closure_subset_seqClosure
seqClosure_subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
seqClosure
closure
β€”mem_closure_of_tendsto
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.univ_mem'
subset_seqClosure πŸ“–mathematicalβ€”Set
Set.instHasSubset
seqClosure
β€”tendsto_const_nhds
tendsto_nhds_iff_seq_tendsto πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Filter.atTop
Nat.instPreorder
β€”Filter.Tendsto.comp
Filter.HasBasis.tendsto_iff
nhds_basis_closeds
seqClosure_eq_closure
IsClosed.mem_of_tendsto
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.of_forall
isClosed_closure
subset_closure

---

← Back to Index