📁 Source: Mathlib/Topology/Sets/CompactOpenCovered.lean
IsCompactOpenCovered
empty
exists_mem_of_isBasis
id_iff_isOpen_and_isCompact
iff_isCompactOpenCovered_sigmaMk
iff_of_unique
image
of_biUnion_eq_of_finite
of_biUnion_eq_of_isCompact
of_comp
of_finite
of_finite_of_isSpectralMap
of_iUnion_eq_of_finite
of_isCompact_of_forall_exists_isCompactOpenCovered
of_isOpenMap
Set
Set.instEmptyCollection
Set.finite_empty
isOpen_empty
isCompact_empty
Set.iUnion_congr_Prop
Set.image_empty
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
TopologicalSpace.Opens.IsBasis
IsCompact
TopologicalSpace.Opens.carrier
TopologicalSpace.Opens
Set.instMembership
Set.iUnion
Set.image
SetLike.coe
TopologicalSpace.Opens.instSetLike
Finite.instSigma
Set.ext
Set.image_congr
Set.mem_iUnion
TopologicalSpace.Opens.coe_sSup
TopologicalSpace.Opens.IsBasis.exists_finite_of_isCompact
nonempty_fintype
Function.Surjective.iUnion_comp
Equiv.surjective
IsOpen
Set.image_id'
TopologicalSpace.Opens.is_open'
instTopologicalSpaceSigma
isOpen_sigma_iff
Set.mk_preimage_sigma
Set.mk_preimage_sigma_eq_empty
Set.isCompact_sigma
IsCompact.sigma_exists_finite_sigma_eq
Set.image_sigma_eq_iUnion
Unique.instInhabited
Set.eq_empty_or_singleton_of_unique
Set.iUnion_iUnion_eq_left
Set.finite_singleton
Set.Finite.to_subtype
Set.iUnion_coe_set
IsCompact.elim_finite_subcover
Set.instReflSubset
subset_antisymm
Set.instAntisymmSubset
Finset.coe_image
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
subset_trans
Set.instIsTransSubset
Set.toFinite
Finite.Set.finite_image
Finite.of_fintype
PrespectralSpace
Continuous
Continuous.sigma_map
PrespectralSpace.exists_isCompact_and_isOpen_between
PrespectralSpace.sigma
IsCompact.image
IsOpen.preimage
Set.image_comp
Set.image_mono
IsSpectralMap
Set.range
Set.finite_univ
IsSpectralMap.toContinuous
IsCompact.preimage_of_isOpen
Set.iUnion_true
TopologicalSpace.Opens.coe_iSup
isCompact_iUnion
Set.image_iUnion
Set.instHasSubset
IsOpenMap
IsOpenMap.exists_opens_image_eq_of_prespectralSpace
continuous_sigma_iff
isOpenMap_sigma
IsCompactOpenCovered.of_finite_of_isSpectralMap
IsCompactOpenCovered.of_finite
IsCompactOpenCovered.image
AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isCompact
IsCompactOpenCovered.of_isOpenMap
IsCompactOpenCovered.iff_isCompactOpenCovered_sigmaMk
IsCompactOpenCovered.iff_of_unique
AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen
AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered
IsCompactOpenCovered.empty
AlgebraicGeometry.quasiCompactCover_iff
IsCompactOpenCovered.id_iff_isOpen_and_isCompact
---
← Back to Index