Documentation Verification Report

CompactOpenCovered

📁 Source: Mathlib/Topology/Sets/CompactOpenCovered.lean

Statistics

MetricCount
DefinitionsIsCompactOpenCovered
1
Theoremsempty, exists_mem_of_isBasis, id_iff_isOpen_and_isCompact, iff_isCompactOpenCovered_sigmaMk, iff_of_unique, image, of_biUnion_eq_of_finite, of_biUnion_eq_of_isCompact, of_comp, of_finite, of_finite_of_isSpectralMap, of_iUnion_eq_of_finite, of_isCompact_of_forall_exists_isCompactOpenCovered, of_isOpenMap
14
Total15

IsCompactOpenCovered

Theorems

NameKindAssumesProvesValidatesDepends On
empty 📖mathematicalIsCompactOpenCovered
Set
Set.instEmptyCollection
Set.finite_empty
isOpen_empty
isCompact_empty
Set.iUnion_congr_Prop
Set.image_empty
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
exists_mem_of_isBasis 📖mathematicalTopologicalSpace.Opens.IsBasis
IsCompact
TopologicalSpace.Opens.carrier
IsCompactOpenCovered
TopologicalSpace.Opens
Set
Set.instMembership
Set.iUnion
Set.image
SetLike.coe
TopologicalSpace.Opens.instSetLike
Finite.instSigma
Set.ext
Set.image_congr
Set.iUnion_congr_Prop
Set.mem_iUnion
TopologicalSpace.Opens.coe_sSup
TopologicalSpace.Opens.IsBasis.exists_finite_of_isCompact
nonempty_fintype
Function.Surjective.iUnion_comp
Equiv.surjective
id_iff_isOpen_and_isCompact 📖mathematicalIsCompactOpenCovered
IsOpen
IsCompact
iff_of_unique
Set.image_congr
Set.image_id'
TopologicalSpace.Opens.is_open'
iff_isCompactOpenCovered_sigmaMk 📖mathematicalIsCompactOpenCovered
instTopologicalSpaceSigma
iff_of_unique
isOpen_sigma_iff
Set.mk_preimage_sigma
TopologicalSpace.Opens.is_open'
Set.mk_preimage_sigma_eq_empty
Set.isCompact_sigma
Set.ext
IsCompact.sigma_exists_finite_sigma_eq
Set.iUnion_congr_Prop
Set.image_sigma_eq_iUnion
Set.image_congr
iff_of_unique 📖mathematicalIsCompactOpenCovered
IsCompact
Unique.instInhabited
TopologicalSpace.Opens.carrier
Set.image
Set.eq_empty_or_singleton_of_unique
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.iUnion_iUnion_eq_left
Set.finite_singleton
image 📖mathematicalIsCompact
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
IsCompactOpenCovered
Set.image
Set.finite_singleton
Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
of_biUnion_eq_of_finite 📖Set.iUnion
Set
Set.instMembership
IsCompactOpenCovered
Set.Finite.to_subtype
of_iUnion_eq_of_finite
Set.iUnion_coe_set
Set.iUnion_congr_Prop
of_biUnion_eq_of_isCompact 📖IsCompact
Set.iUnion
TopologicalSpace.Opens
Set
Set.instMembership
SetLike.coe
TopologicalSpace.Opens.instSetLike
IsCompactOpenCovered
IsCompact.elim_finite_subcover
TopologicalSpace.Opens.is_open'
Set.iUnion_coe_set
Set.iUnion_congr_Prop
Set.instReflSubset
of_biUnion_eq_of_finite
subset_antisymm
Set.instAntisymmSubset
Finset.coe_image
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
subset_trans
Set.instIsTransSubset
Set.toFinite
Finite.Set.finite_image
Finite.of_fintype
of_comp 📖PrespectralSpace
Continuous
IsOpen
IsCompactOpenCovered
iff_isCompactOpenCovered_sigmaMk
iff_of_unique
Continuous.sigma_map
PrespectralSpace.exists_isCompact_and_isOpen_between
PrespectralSpace.sigma
IsCompact.image
IsOpen.preimage
subset_antisymm
Set.instAntisymmSubset
Set.image_comp
subset_trans
Set.instIsTransSubset
Set.image_mono
Set.instReflSubset
of_finite 📖mathematicalIsCompact
TopologicalSpace.Opens.carrier
Set.iUnion
Set.image
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
IsCompactOpenCoveredof_iUnion_eq_of_finite
image
of_finite_of_isSpectralMap 📖mathematicalIsSpectralMap
Set
Set.instMembership
Set.range
IsOpen
IsCompact
IsCompactOpenCoveredSet.finite_univ
IsOpen.preimage
IsSpectralMap.toContinuous
IsCompact.preimage_of_isOpen
subset_antisymm
Set.instAntisymmSubset
Set.iUnion_congr_Prop
Set.iUnion_true
Set.instReflSubset
of_iUnion_eq_of_finite 📖Set.iUnion
IsCompactOpenCovered
iff_isCompactOpenCovered_sigmaMk
iff_of_unique
TopologicalSpace.Opens.coe_iSup
isCompact_iUnion
Set.image_iUnion
of_isCompact_of_forall_exists_isCompactOpenCovered 📖IsCompact
Set
Set.instHasSubset
Set.instMembership
IsOpen
IsCompactOpenCovered
of_biUnion_eq_of_isCompact
subset_antisymm
Set.instAntisymmSubset
Set.iUnion_exists
of_isOpenMap 📖mathematicalPrespectralSpace
Continuous
IsOpenMap
Set
Set.instMembership
Set.range
IsOpen
IsCompact
IsCompactOpenCoverediff_isCompactOpenCovered_sigmaMk
iff_of_unique
IsOpenMap.exists_opens_image_eq_of_prespectralSpace
PrespectralSpace.sigma
continuous_sigma_iff
isOpenMap_sigma

(root)

Definitions

NameCategoryTheorems
IsCompactOpenCovered 📖MathDef
12 mathmath: IsCompactOpenCovered.of_finite_of_isSpectralMap, IsCompactOpenCovered.of_finite, IsCompactOpenCovered.image, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isCompact, IsCompactOpenCovered.of_isOpenMap, IsCompactOpenCovered.iff_isCompactOpenCovered_sigmaMk, IsCompactOpenCovered.iff_of_unique, AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen, AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered, IsCompactOpenCovered.empty, AlgebraicGeometry.quasiCompactCover_iff, IsCompactOpenCovered.id_iff_isOpen_and_isCompact

---

← Back to Index