Documentation Verification Report

VietorisTopology

πŸ“ Source: Mathlib/Topology/Sets/VietorisTopology.lean

Statistics

MetricCount
Definitionstopology, topology, vietoris
3
Theoremspowerset_vietoris, powerset_vietoris, powerset_vietoris, compactSpace_iff, continuous_coe, instCompactSpace, instNoncompactSpace, isClopen_singleton_bot, isClosed_inter_nonempty_of_isClosed, isClosed_subsets_of_isClosed, isCompact_biUnion_coe_of_isCompact, isCompact_subsets_of_isCompact, isEmbedding_coe, isOpen_inter_nonempty_of_isOpen, isOpen_subsets_of_isOpen, noncompactSpace_iff, compactSpace_iff, continuous_coe, continuous_toCompacts, instCompactSpace, instNoncompactSpace, isClosedEmbedding_toCompacts, isClosed_inter_nonempty_of_isClosed, isClosed_subsets_of_isClosed, isCompact_biUnion_coe_of_isCompact, isCompact_subsets_of_isCompact, isEmbedding_coe, isEmbedding_toCompacts, isOpenEmbedding_toCompacts, isOpen_inter_nonempty_of_isOpen, isOpen_subsets_of_isOpen, noncompactSpace_iff, instCompactSpaceSet, isClopen_singleton_empty, isClosed_inter_nonempty_of_isClosed, isOpen_inter_nonempty_of_isOpen, specializes_closure, specializes_of_subset_closure
38
Total41

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
powerset_vietoris πŸ“–mathematicalβ€”IsClosed
Set
TopologicalSpace.vietoris
Set.powerset
β€”TopologicalSpace.vietoris.isOpen_inter_nonempty_of_isOpen
isOpen_compl

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
powerset_vietoris πŸ“–mathematicalIsCompactSet
TopologicalSpace.vietoris
Set.powerset
β€”instIsEmptyFalse

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
powerset_vietoris πŸ“–mathematicalIsOpenSet
TopologicalSpace.vietoris
Set.powerset
β€”TopologicalSpace.isOpen_generateFrom_of_mem

TopologicalSpace

Definitions

NameCategoryTheorems
vietoris πŸ“–CompOp
15 mathmath: vietoris.specializes_of_subset_closure, Compacts.isEmbedding_coe, vietoris.specializes_closure, vietoris.isClopen_singleton_empty, NonemptyCompacts.isEmbedding_coe, vietoris.instCompactSpaceSet, vietoris.isClosed_inter_nonempty_of_isClosed, Compacts.continuous_coe, vietoris.isOpen_inter_nonempty_of_isOpen, IsOpen.powerset_vietoris, IsClosed.powerset_vietoris, TotallyBounded.nhds_vietoris_le_nhds_hausdorff, IsCompact.powerset_vietoris, NonemptyCompacts.continuous_coe, IsCompact.nhds_hausdorff_eq_nhds_vietoris

TopologicalSpace.Compacts

Definitions

NameCategoryTheorems
topology πŸ“–CompOp
18 mathmath: isClosed_subsets_of_isClosed, isEmbedding_coe, isClosed_inter_nonempty_of_isClosed, isClopen_singleton_bot, instCompactSpace, TopologicalSpace.NonemptyCompacts.continuous_toCompacts, compactSpace_iff, continuous_coe, isOpen_inter_nonempty_of_isOpen, TopologicalSpace.NonemptyCompacts.isOpenEmbedding_toCompacts, instNoncompactSpace, noncompactSpace_iff, continuous_toCloseds, isCompact_subsets_of_isCompact, isEmbedding_toCloseds, isOpen_subsets_of_isOpen, TopologicalSpace.NonemptyCompacts.isEmbedding_toCompacts, TopologicalSpace.NonemptyCompacts.isClosedEmbedding_toCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_iff πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.Compacts
topology
β€”Set.biUnion_univ
Set.mem_singleton
isCompact_biUnion_coe_of_isCompact
isCompact_univ
instCompactSpace
continuous_coe πŸ“–mathematicalβ€”Continuous
TopologicalSpace.Compacts
Set
topology
TopologicalSpace.vietoris
SetLike.coe
instSetLike
β€”Topology.IsEmbedding.continuous
isEmbedding_coe
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.Compacts
topology
β€”isCompact_subsets_of_isCompact
isCompact_univ
instNoncompactSpace πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.Compacts
topology
β€”noncompactSpace_iff
isClopen_singleton_bot πŸ“–mathematicalβ€”IsClopen
TopologicalSpace.Compacts
topology
Set
Set.instSingletonSet
Bot.bot
instBot
β€”coe_bot
Set.image_singleton
Function.Injective.preimage_image
SetLike.coe_injective
IsClopen.preimage
TopologicalSpace.vietoris.isClopen_singleton_empty
continuous_coe
isClosed_inter_nonempty_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Compacts
topology
setOf
Set.Nonempty
Set
Set.instInter
SetLike.coe
instSetLike
β€”compl_compl
IsOpen.isClosed_compl
isOpen_subsets_of_isOpen
IsClosed.isOpen_compl
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Compacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”isOpen_inter_nonempty_of_isOpen
IsClosed.isOpen_compl
isCompact_biUnion_coe_of_isCompact πŸ“–mathematicalIsCompact
TopologicalSpace.Compacts
topology
Set.iUnion
Set
Set.instMembership
SetLike.coe
instSetLike
β€”isCompact_iff_finite_subcover
IsCompact.elim_finite_subcover
isOpen_subsets_of_isOpen
isOpen_biUnion
Set.mem_iUnion
isCompact
Set.iUnionβ‚‚_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.biUnion_subset_biUnion_left
Set.biUnion_iUnion
Finset.set_biUnion_biUnion
Set.subset_iUnionβ‚‚_of_subset
isCompact_subsets_of_isCompact πŸ“–mathematicalIsCompactTopologicalSpace.Compacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Topology.IsEmbedding.isCompact_iff
isEmbedding_coe
IsCompact.of_subset_of_specializes
IsCompact.powerset_vietoris
IsCompact.inter_right
isClosed_closure
Set.mem_image_of_mem
Set.inter_subset_left
TopologicalSpace.vietoris.specializes_of_subset_closure
Set.subset_inter
subset_closure
Set.inter_subset_right
isEmbedding_coe πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.Compacts
Set
topology
TopologicalSpace.vietoris
SetLike.coe
instSetLike
β€”SetLike.coe_injective
isOpen_inter_nonempty_of_isOpen πŸ“–mathematicalIsOpenTopologicalSpace.Compacts
topology
setOf
Set.Nonempty
Set
Set.instInter
SetLike.coe
instSetLike
β€”Continuous.isOpen_preimage
continuous_coe
TopologicalSpace.vietoris.isOpen_inter_nonempty_of_isOpen
isOpen_subsets_of_isOpen πŸ“–mathematicalIsOpenTopologicalSpace.Compacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Continuous.isOpen_preimage
continuous_coe
IsOpen.powerset_vietoris
noncompactSpace_iff πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.Compacts
topology
β€”β€”

TopologicalSpace.NonemptyCompacts

Definitions

NameCategoryTheorems
topology πŸ“–CompOp
21 mathmath: isEmbedding_coe, continuous_toCompacts, isOpen_inter_nonempty_of_isOpen, isEmbedding_toCloseds, isOpen_subsets_of_isOpen, GromovHausdorff.toGHSpace_continuous, isClosed_inter_nonempty_of_isClosed, isOpenEmbedding_toCompacts, instCompactSpace, noncompactSpace_iff, continuous_toCloseds, instNoncompactSpace, EMetric.NonemptyCompacts.isClosed_subsets_of_isClosed, EMetric.NonemptyCompacts.continuous_toCloseds, continuous_coe, isEmbedding_toCompacts, compactSpace_iff, isCompact_subsets_of_isCompact, isClosedEmbedding_toCompacts, isClosed_subsets_of_isClosed, instSecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_iff πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.NonemptyCompacts
topology
β€”Set.biUnion_univ
Set.mem_singleton
isCompact_biUnion_coe_of_isCompact
isCompact_univ
instCompactSpace
continuous_coe πŸ“–mathematicalβ€”Continuous
TopologicalSpace.NonemptyCompacts
Set
topology
TopologicalSpace.vietoris
SetLike.coe
instSetLike
β€”Topology.IsEmbedding.continuous
isEmbedding_coe
continuous_toCompacts πŸ“–mathematicalβ€”Continuous
TopologicalSpace.NonemptyCompacts
TopologicalSpace.Compacts
topology
TopologicalSpace.Compacts.topology
toCompacts
β€”Topology.IsEmbedding.continuous
isEmbedding_toCompacts
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.NonemptyCompacts
topology
β€”Topology.IsClosedEmbedding.compactSpace
TopologicalSpace.Compacts.instCompactSpace
isClosedEmbedding_toCompacts
instNoncompactSpace πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.NonemptyCompacts
topology
β€”noncompactSpace_iff
isClosedEmbedding_toCompacts πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
TopologicalSpace.NonemptyCompacts
TopologicalSpace.Compacts
topology
TopologicalSpace.Compacts.topology
toCompacts
β€”isEmbedding_toCompacts
range_toCompacts
IsClopen.isClosed
IsClopen.compl
TopologicalSpace.Compacts.isClopen_singleton_bot
isClosed_inter_nonempty_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.NonemptyCompacts
topology
setOf
Set.Nonempty
Set
Set.instInter
SetLike.coe
instSetLike
β€”IsClosed.preimage
continuous_coe
TopologicalSpace.vietoris.isClosed_inter_nonempty_of_isClosed
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.NonemptyCompacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”IsClosed.preimage
continuous_coe
IsClosed.powerset_vietoris
isCompact_biUnion_coe_of_isCompact πŸ“–mathematicalIsCompact
TopologicalSpace.NonemptyCompacts
topology
Set.iUnion
Set
Set.instMembership
SetLike.coe
instSetLike
β€”Set.biUnion_image
Set.iUnion_congr_Prop
TopologicalSpace.Compacts.isCompact_biUnion_coe_of_isCompact
IsCompact.image
continuous_toCompacts
isCompact_subsets_of_isCompact πŸ“–mathematicalIsCompactTopologicalSpace.NonemptyCompacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Topology.IsClosedEmbedding.isCompact_preimage
isClosedEmbedding_toCompacts
TopologicalSpace.Compacts.isCompact_subsets_of_isCompact
isEmbedding_coe πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.NonemptyCompacts
Set
topology
TopologicalSpace.vietoris
SetLike.coe
instSetLike
β€”SetLike.coe_injective
isEmbedding_toCompacts πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.NonemptyCompacts
TopologicalSpace.Compacts
topology
TopologicalSpace.Compacts.topology
toCompacts
β€”induced_compose
toCompacts_injective
isOpenEmbedding_toCompacts πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
TopologicalSpace.NonemptyCompacts
TopologicalSpace.Compacts
topology
TopologicalSpace.Compacts.topology
toCompacts
β€”isEmbedding_toCompacts
range_toCompacts
IsClopen.isOpen
IsClopen.compl
TopologicalSpace.Compacts.isClopen_singleton_bot
isOpen_inter_nonempty_of_isOpen πŸ“–mathematicalIsOpenTopologicalSpace.NonemptyCompacts
topology
setOf
Set.Nonempty
Set
Set.instInter
SetLike.coe
instSetLike
β€”IsOpen.preimage
continuous_coe
TopologicalSpace.vietoris.isOpen_inter_nonempty_of_isOpen
isOpen_subsets_of_isOpen πŸ“–mathematicalIsOpenTopologicalSpace.NonemptyCompacts
topology
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”IsOpen.preimage
continuous_coe
IsOpen.powerset_vietoris
noncompactSpace_iff πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.NonemptyCompacts
topology
β€”β€”

TopologicalSpace.vietoris

Theorems

NameKindAssumesProvesValidatesDepends On
instCompactSpaceSet πŸ“–mathematicalβ€”CompactSpace
Set
TopologicalSpace.vietoris
β€”IsCompact.powerset_vietoris
isCompact_univ
Set.powerset_univ
isClopen_singleton_empty πŸ“–mathematicalβ€”IsClopen
Set
TopologicalSpace.vietoris
Set.instSingletonSet
Set.instEmptyCollection
β€”Set.powerset_empty
IsClosed.powerset_vietoris
isClosed_empty
IsOpen.powerset_vietoris
isOpen_empty
isClosed_inter_nonempty_of_isClosed πŸ“–mathematicalβ€”IsClosed
Set
TopologicalSpace.vietoris
setOf
Set.Nonempty
Set.instInter
β€”compl_compl
IsOpen.isClosed_compl
IsOpen.powerset_vietoris
IsClosed.isOpen_compl
isOpen_inter_nonempty_of_isOpen πŸ“–mathematicalIsOpenSet
TopologicalSpace.vietoris
setOf
Set.Nonempty
Set.instInter
β€”TopologicalSpace.isOpen_generateFrom_of_mem
specializes_closure πŸ“–mathematicalβ€”Specializes
Set
TopologicalSpace.vietoris
closure
β€”specializes_of_subset_closure
subset_closure
Set.Subset.rfl
specializes_of_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
closure
Specializes
TopologicalSpace.vietoris
β€”TopologicalSpace.nhds_generateFrom
iInfβ‚‚_le
HasSubset.Subset.trans
Set.instIsTransSubset
Set.mem_image_of_mem
mem_closure_iff

---

← Back to Index