Documentation Verification Report

Alexandrov

📁 Source: Mathlib/Topology/Sheaves/Alexandrov.lean

Statistics

MetricCount
Definitionsgenerator, isLimit, lowerCone, principalOpen, principals, principalsKanExtension, projSup
7
Theoremsexists_le_of_le_sup, isSheaf_principalsKanExtension, lowerCone_pt, lowerCone_π_app, principalOpen_le, principalOpen_le_iff, principals_map, principals_obj, projSup_map, projSup_obj, self_mem_principalOpen, isSheaf_of_isRightKanExtension
12
Total19

Alexandrov

Definitions

NameCategoryTheorems
generator 📖CompOp
2 mathmath: lowerCone_π_app, lowerCone_pt
isLimit 📖CompOp
lowerCone 📖CompOp
2 mathmath: lowerCone_π_app, lowerCone_pt
principalOpen 📖CompOp
8 mathmath: principals_map, principalOpen_le_iff, principals_obj, self_mem_principalOpen, lowerCone_π_app, principalOpen_le, projSup_obj, projSup_map
principals 📖CompOp
6 mathmath: principals_map, principals_obj, lowerCone_π_app, projSup_obj, lowerCone_pt, projSup_map
principalsKanExtension 📖CompOp
3 mathmath: lowerCone_π_app, lowerCone_pt, isSheaf_principalsKanExtension
projSup 📖CompOp
3 mathmath: lowerCone_π_app, projSup_obj, projSup_map

Theorems

NameKindAssumesProvesValidatesDepends On
exists_le_of_le_sup 📖TopologicalSpace.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
principalOpen
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
isSheaf_principalsKanExtension 📖mathematicalTopCat.Presheaf.IsSheaf
principalsKanExtension
TopCat.carrier
TopCat.str
TopCat.Presheaf.isSheaf_iff_isSheafOpensLeCover
lowerCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.StructuredArrow
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
principals
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
generator
lowerCone
CategoryTheory.ObjectProperty.FullSubcategory
TopCat.carrier
TopCat.of
TopCat.str
Preorder.toLE
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.op
CategoryTheory.ObjectProperty.ι
principalsKanExtension
lowerCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
principals
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.ObjectProperty.FullSubcategory
TopCat.carrier
TopCat.of
TopCat.str
Preorder.toLE
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.ObjectProperty.ι
principalsKanExtension
generator
CategoryTheory.Limits.Cone.π
lowerCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.SheafCondition.OpensLeCover
TopCat.Presheaf.SheafCondition.instCategoryOpensLeCover
projSup
CategoryTheory.Limits.limit.π
principalOpen
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
principalOpen_le 📖mathematicalPreorder.toLETopologicalSpace.Opens
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
principalOpen
le_trans
principalOpen_le_iff 📖mathematicalTopologicalSpace.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
principalOpen
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
self_mem_principalOpen
TopologicalSpace.Opens.isOpen
Topology.IsUpperSet.isOpen_iff_isUpperSet
principals_map 📖mathematicalCategoryTheory.Functor.map
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
principals
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
principalOpen
LE.le.hom
principals_obj 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
principals
Opposite.op
principalOpen
projSup_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
principals
CategoryTheory.instCategoryStructuredArrow
TopCat.Presheaf.SheafCondition.OpensLeCover
TopCat.of
TopCat.Presheaf.SheafCondition.instCategoryOpensLeCover
projSup
Quiver.Hom.op
CategoryTheory.ObjectProperty.FullSubcategory
TopCat.carrier
TopCat.str
Preorder.toLE
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
principalOpen
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.homMk
CategoryTheory.homOfLE
CategoryTheory.ObjectProperty.FullSubcategory.obj
projSup_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
Preorder.smallCategory
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
principals
CategoryTheory.instCategoryStructuredArrow
TopCat.Presheaf.SheafCondition.OpensLeCover
TopCat.of
TopCat.Presheaf.SheafCondition.instCategoryOpensLeCover
projSup
TopCat.carrier
TopCat.str
Preorder.toLE
principalOpen
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
self_mem_principalOpen 📖mathematicalTopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
principalOpen
le_refl

Topology.IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_of_isRightKanExtension 📖mathematicalCategoryTheory.Presheaf.IsSheaf
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Functor.instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
TopCat.Presheaf.isSheaf_iso_iff
Alexandrov.isSheaf_principalsKanExtension

---

← Back to Index