Documentation Verification Report

LocalPredicate

๐Ÿ“ Source: Mathlib/Topology/Sheaves/LocalPredicate.lean

Statistics

MetricCount
DefinitionsLocalPredicate, and, toPrelocalPredicate, PrelocalPredicate, and, pred, sheafify, continuousLocal, continuousPrelocal, inhabitedLocalPredicate, inhabitedPrelocalPredicate, isSection, sheafToTop, stalkToFiber, subpresheafContinuousPrelocalIsoPresheafToTop, subpresheafToTypes, subtype, subsheafToTypes
18
Theoremslocality, res, sheafifyOf, sheafify_inductionOn, sheafify_inductionOn', sheafify_inductionOnโ‚‚, sheafify_inductionOnโ‚‚', continuousPrelocal_pred, stalkToFiber_germ, stalkToFiber_injective, stalkToFiber_surjective, isSheaf, subpresheafToTypes_map_coe, subpresheafToTypes_obj, subsheafToTypes_val
15
Total33

TopCat

Definitions

NameCategoryTheorems
LocalPredicate ๐Ÿ“–CompDataโ€”
PrelocalPredicate ๐Ÿ“–CompDataโ€”
continuousLocal ๐Ÿ“–CompOpโ€”
continuousPrelocal ๐Ÿ“–CompOp
1 mathmath: continuousPrelocal_pred
inhabitedLocalPredicate ๐Ÿ“–CompOpโ€”
inhabitedPrelocalPredicate ๐Ÿ“–CompOpโ€”
isSection ๐Ÿ“–CompOpโ€”
sheafToTop ๐Ÿ“–CompOpโ€”
stalkToFiber ๐Ÿ“–CompOp
3 mathmath: stalkToFiber_germ, stalkToFiber_injective, stalkToFiber_surjective
subpresheafContinuousPrelocalIsoPresheafToTop ๐Ÿ“–CompOpโ€”
subpresheafToTypes ๐Ÿ“–CompOp
4 mathmath: subsheafToTypes_val, subpresheafToTypes_map_coe, subpresheafToTypes.isSheaf, subpresheafToTypes_obj
subsheafToTypes ๐Ÿ“–CompOp
4 mathmath: stalkToFiber_germ, stalkToFiber_injective, stalkToFiber_surjective, subsheafToTypes_val

Theorems

NameKindAssumesProvesValidatesDepends On
continuousPrelocal_pred ๐Ÿ“–mathematicalโ€”PrelocalPredicate.pred
continuousPrelocal
Continuous
carrier
TopologicalSpace.Opens
str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
โ€”โ€”
stalkToFiber_germ ๐Ÿ“–mathematicalcarrier
TopologicalSpace.Opens
str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
stalkToFiber
Presheaf.germ
CategoryTheory.types
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Sheaf.presheaf
subsheafToTypes
PrelocalPredicate.pred
LocalPredicate.toPrelocalPredicate
Opposite.unop
Opposite.op
โ€”CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.Limits.Types.Colimit.ฮน_desc_apply
stalkToFiber_injective ๐Ÿ“–mathematicalDFunLike.coe
Quiver.Hom
TopologicalSpace.OpenNhds
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.OpenNhds.partialOrder
carrier
TopologicalSpace.Opens
str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopologicalSpace.OpenNhds.opensNhds.instFunLike
Presheaf.stalk
CategoryTheory.types
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Sheaf.presheaf
subsheafToTypes
stalkToFiber
โ€”CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Types.jointly_surjective'
CategoryTheory.Limits.Types.Colimit.ฮน_desc_apply
PrelocalPredicate.res
CategoryTheory.Limits.Types.colimit_sound
stalkToFiber_surjective ๐Ÿ“–mathematicalcarrier
TopologicalSpace.Opens
str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Presheaf.stalk
CategoryTheory.types
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Sheaf.presheaf
subsheafToTypes
stalkToFiber
โ€”CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
stalkToFiber_germ
subpresheafToTypes_map_coe ๐Ÿ“–mathematicalโ€”PrelocalPredicate.pred
Opposite.unop
TopologicalSpace.Opens
carrier
str
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.types
subpresheafToTypes
DFunLike.coe
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopologicalSpace.Opens.opensHom.instFunLike
Quiver.Hom.unop
โ€”โ€”
subpresheafToTypes_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
carrier
str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.types
subpresheafToTypes
PrelocalPredicate.pred
Opposite.unop
โ€”โ€”
subsheafToTypes_val ๐Ÿ“–mathematicalโ€”CategoryTheory.Sheaf.val
TopologicalSpace.Opens
carrier
str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
CategoryTheory.types
subsheafToTypes
subpresheafToTypes
LocalPredicate.toPrelocalPredicate
โ€”โ€”

TopCat.LocalPredicate

Definitions

NameCategoryTheorems
and ๐Ÿ“–CompOpโ€”
toPrelocalPredicate ๐Ÿ“–CompOp
29 mathmath: AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, AlgebraicGeometry.Proj.pow_apply, AlgebraicGeometry.Proj.mul_apply, smoothSheafCommRing.eval_germ, AlgebraicGeometry.structureSheafInType.mul_apply, AlgebraicGeometry.Proj.one_apply, AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.StructureSheaf.comap_apply, TopCat.stalkToFiber_germ, smoothSheafCommRing.evalHom_germ, StructureGroupoid.LocalInvariantProp.section_spec, TopCat.subsheafToTypes_val, AlgebraicGeometry.Proj.zero_apply, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.one_mem', AlgebraicGeometry.structureSheafInType.add_apply, AlgebraicGeometry.Proj.ext_iff, TopCat.subpresheafToTypes.isSheaf, smoothSheaf.eval_germ, AlgebraicGeometry.Proj.add_apply, AlgebraicGeometry.StructureSheaf.res_apply, TopCat.PrelocalPredicate.sheafifyOf, AlgebraicGeometry.stalkToFiberRingHom_germ, AlgebraicGeometry.Proj.stalkIso'_germ, smoothSheaf.contMDiff_section, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.zero_mem', AlgebraicGeometry.Proj.res_apply, AlgebraicGeometry.StructureSheaf.comapโ‚—_eq_localRingHom, AlgebraicGeometry.StructureSheaf.const_apply, AlgebraicGeometry.structureSheafInType.smul_apply

Theorems

NameKindAssumesProvesValidatesDepends On
locality ๐Ÿ“–โ€”TopCat.PrelocalPredicate.pred
toPrelocalPredicate
DFunLike.coe
Quiver.Hom
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopologicalSpace.Opens.opensHom.instFunLike
โ€”โ€”โ€”

TopCat.PrelocalPredicate

Definitions

NameCategoryTheorems
and ๐Ÿ“–CompOpโ€”
pred ๐Ÿ“–MathDef
29 mathmath: AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, AlgebraicGeometry.Proj.pow_apply, AlgebraicGeometry.Proj.mul_apply, smoothSheafCommRing.eval_germ, AlgebraicGeometry.structureSheafInType.mul_apply, AlgebraicGeometry.Proj.one_apply, AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.StructureSheaf.comap_apply, TopCat.stalkToFiber_germ, TopCat.continuousPrelocal_pred, smoothSheafCommRing.evalHom_germ, StructureGroupoid.LocalInvariantProp.section_spec, AlgebraicGeometry.Proj.zero_apply, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.one_mem', TopCat.subpresheafToTypes_map_coe, AlgebraicGeometry.structureSheafInType.add_apply, AlgebraicGeometry.Proj.ext_iff, smoothSheaf.eval_germ, AlgebraicGeometry.Proj.add_apply, AlgebraicGeometry.StructureSheaf.res_apply, AlgebraicGeometry.stalkToFiberRingHom_germ, AlgebraicGeometry.Proj.stalkIso'_germ, smoothSheaf.contMDiff_section, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.zero_mem', AlgebraicGeometry.Proj.res_apply, AlgebraicGeometry.StructureSheaf.comapโ‚—_eq_localRingHom, AlgebraicGeometry.StructureSheaf.const_apply, TopCat.subpresheafToTypes_obj, AlgebraicGeometry.structureSheafInType.smul_apply
sheafify ๐Ÿ“–CompOp
1 mathmath: sheafifyOf

Theorems

NameKindAssumesProvesValidatesDepends On
res ๐Ÿ“–mathematicalpredDFunLike.coe
Quiver.Hom
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopologicalSpace.Opens.opensHom.instFunLike
โ€”โ€”
sheafifyOf ๐Ÿ“–mathematicalpredTopCat.LocalPredicate.toPrelocalPredicate
sheafify
โ€”โ€”
sheafify_inductionOn ๐Ÿ“–โ€”TopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
pred
DFunLike.coe
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.opensHom.instFunLike
TopCat.LocalPredicate.toPrelocalPredicate
sheafify
โ€”โ€”โ€”
sheafify_inductionOn' ๐Ÿ“–โ€”pred
TopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopCat.LocalPredicate.toPrelocalPredicate
sheafify
โ€”โ€”sheafify_inductionOn
sheafify_inductionOnโ‚‚ ๐Ÿ“–โ€”TopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
pred
DFunLike.coe
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.opensHom.instFunLike
TopCat.LocalPredicate.toPrelocalPredicate
sheafify
โ€”โ€”โ€”
sheafify_inductionOnโ‚‚' ๐Ÿ“–โ€”pred
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Set
Set.instMembership
SetLike.coe
TopCat.LocalPredicate.toPrelocalPredicate
sheafify
โ€”โ€”sheafify_inductionOnโ‚‚

TopCat.subpresheafToTypes

Definitions

NameCategoryTheorems
subtype ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf ๐Ÿ“–mathematicalโ€”TopCat.Presheaf.IsSheaf
CategoryTheory.types
TopCat.subpresheafToTypes
TopCat.LocalPredicate.toPrelocalPredicate
โ€”TopCat.Presheaf.isSheaf_of_isSheafUniqueGluing_types
TopCat.Sheaf.existsUnique_gluing
CategoryTheory.Limits.Types.hasLimitsOfSize
univLE_of_max
UnivLE.self
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom
TopCat.LocalPredicate.locality
TopologicalSpace.Opens.mem_iSup

---

โ† Back to Index