Documentation Verification Report

MayerVietoris

📁 Source: Mathlib/Topology/Sheaves/MayerVietoris.lean

Statistics

MetricCount
DefinitionsmayerVietorisSquare, mayerVietorisSquare'
2
Theoremscoe_mayerVietorisSquare_X₁, coe_mayerVietorisSquare_X₄, mayerVietorisSquare'_toSquare, mayerVietorisSquare_X₂, mayerVietorisSquare_X₃
5
Total7

Opens

Definitions

NameCategoryTheorems
mayerVietorisSquare 📖CompOp
4 mathmath: mayerVietorisSquare_X₃, mayerVietorisSquare_X₂, coe_mayerVietorisSquare_X₁, coe_mayerVietorisSquare_X₄
mayerVietorisSquare' 📖CompOp
1 mathmath: mayerVietorisSquare'_toSquare

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mayerVietorisSquare_X₁ 📖mathematicalSetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
CategoryTheory.Square.X₁
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
grothendieckTopology
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare
Set
Set.instInter
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
coe_mayerVietorisSquare_X₄ 📖mathematicalSetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
CategoryTheory.Square.X₄
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
grothendieckTopology
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare
Set
Set.instUnion
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare'_toSquare 📖mathematicalCategoryTheory.Square.X₄
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Square.X₂
CategoryTheory.Square.X₃
CategoryTheory.Square.X₁
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
grothendieckTopology
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare'
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare_X₂ 📖mathematicalCategoryTheory.Square.X₂
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
grothendieckTopology
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare_X₃ 📖mathematicalCategoryTheory.Square.X₃
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toSquare
grothendieckTopology
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
mayerVietorisSquare
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom

---

← Back to Index