Documentation Verification Report

Over

📁 Source: Mathlib/Topology/Sheaves/Over.lean

Statistics

MetricCount
DefinitionsoverEquivalence
1
Theoremscoe_overEquivalence_functor_obj, coe_overEquivalence_inverse_obj_left, overEquivalence_counitIso_hom_app, overEquivalence_counitIso_inv_app, overEquivalence_inverse_obj_right_as, overEquivalence_unitIso_hom_app_left, overEquivalence_unitIso_inv_app_left
7
Total8

TopologicalSpace.Opens

Definitions

NameCategoryTheorems
overEquivalence 📖CompOp
7 mathmath: coe_overEquivalence_functor_obj, overEquivalence_unitIso_hom_app_left, overEquivalence_counitIso_inv_app, overEquivalence_unitIso_inv_app_left, coe_overEquivalence_inverse_obj_left, overEquivalence_inverse_obj_right_as, overEquivalence_counitIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
coe_overEquivalence_functor_obj 📖mathematicalSetLike.coe
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
CategoryTheory.Functor.obj
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.functor
overEquivalence
Set.preimage
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
coe_overEquivalence_inverse_obj_left 📖mathematicalSetLike.coe
TopologicalSpace.Opens
instSetLike
CategoryTheory.Comma.left
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
SetLike.instMembership
instTopologicalSpaceSubtype
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
overEquivalence
Set.image
overEquivalence_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
Set.image
SetLike.coe
CategoryTheory.homOfLE
CategoryTheory.Over.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
Set.preimage
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
overEquivalence
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
overEquivalence_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
Set.image
SetLike.coe
CategoryTheory.homOfLE
CategoryTheory.Over.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Set.preimage
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
overEquivalence
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
overEquivalence_inverse_obj_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
overEquivalence
overEquivalence_unitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
Set.preimage
SetLike.coe
CategoryTheory.Comma.left
CategoryTheory.homOfLE
Set.image
CategoryTheory.Over.homMk
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
overEquivalence
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
overEquivalence_unitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
Set.preimage
SetLike.coe
CategoryTheory.Comma.left
CategoryTheory.homOfLE
Set.image
CategoryTheory.Over.homMk
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
overEquivalence
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct

---

← Back to Index