📁 Source: Mathlib/Topology/Sheaves/PUnit.lean
isSheaf_iff_isTerminal_of_indiscrete
isSheaf_of_isTerminal_of_indiscrete
isSheaf_on_punit_iff_isTerminal
isSheaf_on_punit_of_isTerminal
TopCat.str
Top.top
TopologicalSpace
TopCat.carrier
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsSheaf
CategoryTheory.Limits.IsTerminal
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
Preorder.smallCategory
TopologicalSpace.Opens.instPartialOrder
Opposite.op
Bot.bot
OrderBot.toBot
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
HeytingAlgebra.toOrderBot
eq_or_ne
existsUnique_iff_exists
CategoryTheory.Limits.IsTerminal.hom_ext
le_bot_iff
CategoryTheory.Sieve.arrows_eq_top_iff
CategoryTheory.Sieve.id_mem_iff_eq_top
TopologicalSpace.Opens.eq_bot_or_top
isEmpty_or_nonempty
SetLike.ext'_iff
Set.univ_eq_empty_iff
CategoryTheory.Presieve.isSheafFor_top
TopCat.of
instTopologicalSpacePUnit
Unique.instSubsingleton
---
← Back to Index