| Name | Category | Theorems |
coneEquiv 📖 | CompOp | 4 mathmath: coneEquiv_counitIso, coneEquiv_inverse, coneEquiv_functor, coneEquiv_unitIso
|
coneEquivCounitIso 📖 | CompOp | 3 mathmath: coneEquivCounitIso_hom_app_hom, coneEquiv_counitIso, coneEquivCounitIso_inv_app_hom
|
coneEquivFunctor 📖 | CompOp | 10 mathmath: coneEquivCounitIso_hom_app_hom, coneEquivCounitIso_inv_app_hom, coneEquivFunctor_obj_pt, coneEquivUnitIso_inv_app_hom, coneEquivFunctor_obj_π_app, coneEquivFunctor_map_hom, coneEquivUnitIso_hom_app_hom, coneEquivUnitIsoApp_hom_hom, coneEquivUnitIsoApp_inv_hom, coneEquiv_functor
|
coneEquivFunctorObj 📖 | CompOp | 3 mathmath: coneEquivFunctorObj_π_app, coneEquivFunctor_map_hom, coneEquivFunctorObj_pt
|
coneEquivInverse 📖 | CompOp | 10 mathmath: coneEquivInverse_obj_π_app, coneEquivCounitIso_hom_app_hom, coneEquivCounitIso_inv_app_hom, coneEquiv_inverse, coneEquivUnitIso_inv_app_hom, coneEquivInverse_obj_pt, coneEquivUnitIso_hom_app_hom, coneEquivUnitIsoApp_hom_hom, coneEquivInverse_map_hom, coneEquivUnitIsoApp_inv_hom
|
coneEquivInverseObj 📖 | CompOp | 3 mathmath: coneEquivInverseObj_π_app, coneEquivInverse_map_hom, coneEquivInverseObj_pt
|
coneEquivUnitIso 📖 | CompOp | 3 mathmath: coneEquivUnitIso_inv_app_hom, coneEquivUnitIso_hom_app_hom, coneEquiv_unitIso
|
coneEquivUnitIsoApp 📖 | CompOp | 2 mathmath: coneEquivUnitIsoApp_hom_hom, coneEquivUnitIsoApp_inv_hom
|
isLimitMapConeOfIsLimitSheafConditionFork 📖 | CompOp | — |
isLimitSheafConditionForkOfIsLimitMapCone 📖 | CompOp | — |