Documentation Verification Report

EqualizerProducts

📁 Source: Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean

Statistics

MetricCount
DefinitionsIsSheafEqualizerProducts, diagram, isoOfIso, fork, isoOfIso, leftRes, piInters, isoOfIso, piOpens, isoOfIso, res, rightRes, coneEquiv, coneEquivCounitIso, coneEquivFunctor, coneEquivFunctorObj, coneEquivInverse, coneEquivInverseObj, coneEquivUnitIso, coneEquivUnitIsoApp, isLimitMapConeOfIsLimitSheafConditionFork, isLimitSheafConditionForkOfIsLimitMapCone
22
Theoremsfork_pt, fork_ι, fork_π_app_walkingParallelPair_one, fork_π_app_walkingParallelPair_zero, hom_ext, hom_ext_iff, hom_ext, hom_ext_iff, res_π, res_π_apply, w, w_apply, coneEquivCounitIso_hom_app_hom, coneEquivCounitIso_inv_app_hom, coneEquivFunctorObj_pt, coneEquivFunctorObj_π_app, coneEquivFunctor_map_hom, coneEquivFunctor_obj_pt, coneEquivFunctor_obj_π_app, coneEquivInverseObj_pt, coneEquivInverseObj_π_app, coneEquivInverse_map_hom, coneEquivInverse_obj_pt, coneEquivInverse_obj_π_app, coneEquivUnitIsoApp_hom_hom, coneEquivUnitIsoApp_inv_hom, coneEquivUnitIso_hom_app_hom, coneEquivUnitIso_inv_app_hom, coneEquiv_counitIso, coneEquiv_functor, coneEquiv_inverse, coneEquiv_unitIso, isSheaf_iff_isSheafEqualizerProducts
33
Total55

TopCat.Presheaf

Definitions

NameCategoryTheorems
IsSheafEqualizerProducts 📖MathDef
1 mathmath: isSheaf_iff_isSheafEqualizerProducts

Theorems

NameKindAssumesProvesValidatesDepends On
isSheaf_iff_isSheafEqualizerProducts 📖mathematicalCategoryTheory.Limits.HasProductsIsSheaf
IsSheafEqualizerProducts
isSheaf_iff_isSheafPairwiseIntersections

TopCat.Presheaf.SheafConditionEqualizerProducts

Definitions

NameCategoryTheorems
diagram 📖CompOp
20 mathmath: TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt
fork 📖CompOp
4 mathmath: fork_π_app_walkingParallelPair_one, fork_ι, fork_pt, fork_π_app_walkingParallelPair_zero
leftRes 📖CompOp
7 mathmath: TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, fork_π_app_walkingParallelPair_one, fork_ι, w, fork_pt, w_apply, fork_π_app_walkingParallelPair_zero
piInters 📖CompOp
8 mathmath: TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, fork_π_app_walkingParallelPair_one, fork_ι, w, piInters.hom_ext_iff, fork_pt, w_apply, fork_π_app_walkingParallelPair_zero
piOpens 📖CompOp
10 mathmath: TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, piOpens.hom_ext_iff, fork_π_app_walkingParallelPair_one, fork_ι, w, res_π, fork_pt, w_apply, fork_π_app_walkingParallelPair_zero, res_π_apply
res 📖CompOp
7 mathmath: fork_π_app_walkingParallelPair_one, fork_ι, w, res_π, w_apply, fork_π_app_walkingParallelPair_zero, res_π_apply
rightRes 📖CompOp
7 mathmath: TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, fork_π_app_walkingParallelPair_one, fork_ι, w, fork_pt, w_apply, fork_π_app_walkingParallelPair_zero

Theorems

NameKindAssumesProvesValidatesDepends On
fork_pt 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
piOpens
piInters
leftRes
rightRes
fork
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
fork_ι 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Fork.ι
piOpens
piInters
leftRes
rightRes
fork
res
fork_π_app_walkingParallelPair_one 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
piOpens
piInters
leftRes
rightRes
fork
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
res
fork_π_app_walkingParallelPair_zero 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
piOpens
piInters
leftRes
rightRes
fork
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.WalkingParallelPair.zero
res
res_π 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
piOpens
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
res
CategoryTheory.Limits.limit.π
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
TopologicalSpace.Opens.leSupr
res.eq_1
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.Fan.mk_π_app
res_π_apply 📖mathematicalCategoryTheory.Limits.HasProductsDFunLike.coe
piOpens
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Limits.limit.π
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
res
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
TopologicalSpace.Opens.leSupr
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
res_π
w 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
piOpens
piInters
res
leftRes
rightRes
piInters.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Functor.map_comp
w_apply 📖mathematicalCategoryTheory.Limits.HasProductsDFunLike.coe
piOpens
piInters
CategoryTheory.ConcreteCategory.hom
leftRes
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
res
rightRes
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
w

TopCat.Presheaf.SheafConditionEqualizerProducts.diagram

Definitions

NameCategoryTheorems
isoOfIso 📖CompOp

TopCat.Presheaf.SheafConditionEqualizerProducts.fork

Definitions

NameCategoryTheorems
isoOfIso 📖CompOp

TopCat.Presheaf.SheafConditionEqualizerProducts.piInters

Definitions

NameCategoryTheorems
isoOfIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.Limits.HasProducts
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.SheafConditionEqualizerProducts.piInters
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Limits.limit.π
CategoryTheory.Limits.limit.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.SheafConditionEqualizerProducts.piInters
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Limits.limit.π
hom_ext

TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens

Definitions

NameCategoryTheorems
isoOfIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.Limits.HasProducts
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
CategoryTheory.Limits.limit.π
CategoryTheory.Limits.limit.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
CategoryTheory.Limits.limit.π
hom_ext

TopCat.Presheaf.SheafConditionPairwiseIntersections

Definitions

NameCategoryTheorems
coneEquiv 📖CompOp
4 mathmath: coneEquiv_counitIso, coneEquiv_inverse, coneEquiv_functor, coneEquiv_unitIso
coneEquivCounitIso 📖CompOp
3 mathmath: coneEquivCounitIso_hom_app_hom, coneEquiv_counitIso, coneEquivCounitIso_inv_app_hom
coneEquivFunctor 📖CompOp
10 mathmath: coneEquivCounitIso_hom_app_hom, coneEquivCounitIso_inv_app_hom, coneEquivFunctor_obj_pt, coneEquivUnitIso_inv_app_hom, coneEquivFunctor_obj_π_app, coneEquivFunctor_map_hom, coneEquivUnitIso_hom_app_hom, coneEquivUnitIsoApp_hom_hom, coneEquivUnitIsoApp_inv_hom, coneEquiv_functor
coneEquivFunctorObj 📖CompOp
3 mathmath: coneEquivFunctorObj_π_app, coneEquivFunctor_map_hom, coneEquivFunctorObj_pt
coneEquivInverse 📖CompOp
10 mathmath: coneEquivInverse_obj_π_app, coneEquivCounitIso_hom_app_hom, coneEquivCounitIso_inv_app_hom, coneEquiv_inverse, coneEquivUnitIso_inv_app_hom, coneEquivInverse_obj_pt, coneEquivUnitIso_hom_app_hom, coneEquivUnitIsoApp_hom_hom, coneEquivInverse_map_hom, coneEquivUnitIsoApp_inv_hom
coneEquivInverseObj 📖CompOp
3 mathmath: coneEquivInverseObj_π_app, coneEquivInverse_map_hom, coneEquivInverseObj_pt
coneEquivUnitIso 📖CompOp
3 mathmath: coneEquivUnitIso_inv_app_hom, coneEquivUnitIso_hom_app_hom, coneEquiv_unitIso
coneEquivUnitIsoApp 📖CompOp
2 mathmath: coneEquivUnitIsoApp_hom_hom, coneEquivUnitIsoApp_inv_hom
isLimitMapConeOfIsLimitSheafConditionFork 📖CompOp
isLimitSheafConditionForkOfIsLimitMapCone 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coneEquivCounitIso_hom_app_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
coneEquivInverse
coneEquivFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
coneEquivCounitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquivCounitIso_inv_app_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
coneEquivInverse
coneEquivFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
coneEquivCounitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquivFunctorObj_pt 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctorObj
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
coneEquivFunctorObj_π_app 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.π
coneEquivFunctorObj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Pi.lift
TopologicalSpace.Opens.instPartialOrder
Opposite.op
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Pairwise.single
SemilatticeInf.toMin
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Pairwise.pair
coneEquivFunctor_map_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctorObj
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.Cone.category
coneEquivFunctor
coneEquivFunctor_obj_pt 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.Cone.category
coneEquivFunctor
coneEquivFunctor_obj_π_app 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
coneEquivFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Pi.lift
TopologicalSpace.Opens.instPartialOrder
Opposite.op
CategoryTheory.Pairwise.single
SemilatticeInf.toMin
CategoryTheory.Pairwise.pair
coneEquivInverseObj_pt 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
coneEquivInverseObj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivInverseObj_π_app 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.Cone.π
coneEquivInverseObj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pairwise.single
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Pi.π
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Pairwise.pair
CategoryTheory.Limits.WalkingParallelPair.one
SemilatticeInf.toMin
coneEquivInverse_map_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
coneEquivInverseObj
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquivInverse
coneEquivInverse_obj_pt 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.Cone.pt
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquivInverse
coneEquivInverse_obj_π_app 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
coneEquivInverse
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
SemilatticeInf.toMin
CategoryTheory.CategoryStruct.comp
TopCat.Presheaf.SheafConditionEqualizerProducts.piOpens
CategoryTheory.Limits.Fork.ι
TopCat.Presheaf.SheafConditionEqualizerProducts.piInters
TopCat.Presheaf.SheafConditionEqualizerProducts.leftRes
TopCat.Presheaf.SheafConditionEqualizerProducts.rightRes
CategoryTheory.Limits.Pi.π
TopologicalSpace.Opens.instPartialOrder
Opposite.unop
CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
CategoryTheory.Category.assoc
coneEquivUnitIsoApp_hom_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.id
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctor
coneEquivInverse
CategoryTheory.Iso.hom
coneEquivUnitIsoApp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquivUnitIsoApp_inv_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctor
coneEquivInverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
coneEquivUnitIsoApp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquivUnitIso_hom_app_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.id
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctor
coneEquivInverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
coneEquivUnitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquivUnitIso_inv_app_hom 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
coneEquivFunctor
coneEquivInverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
coneEquivUnitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquiv_counitIso 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Equivalence.counitIso
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquiv
coneEquivCounitIso
coneEquiv_functor 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Equivalence.functor
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquiv
coneEquivFunctor
coneEquiv_inverse 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Equivalence.inverse
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquiv
coneEquivInverse
coneEquiv_unitIso 📖mathematicalCategoryTheory.Limits.HasProductsCategoryTheory.Equivalence.unitIso
CategoryTheory.Limits.Cone
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
TopCat.Presheaf.SheafConditionEqualizerProducts.diagram
CategoryTheory.Limits.Cone.category
coneEquiv
coneEquivUnitIso

---

← Back to Index