Documentation Verification Report

OpensLeCover

📁 Source: Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean

Statistics

MetricCount
DefinitionsIsSheafOpensLeCover, OpensLeCover, homToIndex, index, instCategoryOpensLeCover, instInhabitedOpensLeCoverOfNonempty, opensLeCoverCocone, generateEquivalenceOpensLe, generateEquivalenceOpensLe_functor', generateEquivalenceOpensLe_inverse', isLimitOpensLeEquivGenerate₁, isLimitOpensLeEquivGenerate₂, whiskerIsoMapGenerateCocone
13
TheoremsisSheafOpensLeCover, generateEquivalenceOpensLe_counitIso, generateEquivalenceOpensLe_functor, generateEquivalenceOpensLe_functor'_map, generateEquivalenceOpensLe_functor'_obj_obj, generateEquivalenceOpensLe_inverse, generateEquivalenceOpensLe_inverse'_map, generateEquivalenceOpensLe_inverse'_obj_obj_hom, generateEquivalenceOpensLe_inverse'_obj_obj_left, generateEquivalenceOpensLe_inverse'_obj_obj_right_as, generateEquivalenceOpensLe_unitIso, isSheaf_iff_isSheafOpensLeCover, whiskerIsoMapGenerateCocone_hom_hom, whiskerIsoMapGenerateCocone_inv_hom
14
Total27

TopCat.Presheaf

Definitions

NameCategoryTheorems
IsSheafOpensLeCover 📖MathDef
2 mathmath: isSheafOpensLeCover_iff_isSheafPairwiseIntersections, isSheaf_iff_isSheafOpensLeCover
generateEquivalenceOpensLe 📖CompOp
6 mathmath: generateEquivalenceOpensLe_unitIso, whiskerIsoMapGenerateCocone_inv_hom, generateEquivalenceOpensLe_functor, generateEquivalenceOpensLe_counitIso, whiskerIsoMapGenerateCocone_hom_hom, generateEquivalenceOpensLe_inverse
generateEquivalenceOpensLe_functor' 📖CompOp
5 mathmath: generateEquivalenceOpensLe_functor'_obj_obj, generateEquivalenceOpensLe_unitIso, generateEquivalenceOpensLe_functor, generateEquivalenceOpensLe_counitIso, generateEquivalenceOpensLe_functor'_map
generateEquivalenceOpensLe_inverse' 📖CompOp
7 mathmath: generateEquivalenceOpensLe_unitIso, generateEquivalenceOpensLe_inverse'_obj_obj_right_as, generateEquivalenceOpensLe_inverse'_obj_obj_hom, generateEquivalenceOpensLe_counitIso, generateEquivalenceOpensLe_inverse'_obj_obj_left, generateEquivalenceOpensLe_inverse'_map, generateEquivalenceOpensLe_inverse
isLimitOpensLeEquivGenerate₁ 📖CompOp
isLimitOpensLeEquivGenerate₂ 📖CompOp
whiskerIsoMapGenerateCocone 📖CompOp
2 mathmath: whiskerIsoMapGenerateCocone_inv_hom, whiskerIsoMapGenerateCocone_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
generateEquivalenceOpensLe_counitIso 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Equivalence.counitIso
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe
CategoryTheory.eqToIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
generateEquivalenceOpensLe_inverse'
generateEquivalenceOpensLe_functor'
generateEquivalenceOpensLe_functor 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Equivalence.functor
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe
generateEquivalenceOpensLe_functor'
generateEquivalenceOpensLe_functor'_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe_functor'
CategoryTheory.ObjectProperty.homMk
Preorder.toLE
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
generateEquivalenceOpensLe_functor'_obj_obj 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Preorder.toLE
CategoryTheory.Functor.obj
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe_functor'
generateEquivalenceOpensLe_inverse 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Equivalence.inverse
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe
generateEquivalenceOpensLe_inverse'
generateEquivalenceOpensLe_inverse'_map 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.ObjectProperty.FullSubcategory.category
generateEquivalenceOpensLe_inverse'
CategoryTheory.ObjectProperty.homMk
CategoryTheory.ObjectProperty.FullSubcategory.obj
Preorder.toLE
CategoryTheory.homOfLE
CategoryTheory.Over.homMk
CategoryTheory.InducedCategory.Hom.hom
generateEquivalenceOpensLe_inverse'_obj_obj_hom 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Comma.hom
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
generateEquivalenceOpensLe_inverse'
CategoryTheory.homOfLE
Preorder.toLE
generateEquivalenceOpensLe_inverse'_obj_obj_left 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Comma.left
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
generateEquivalenceOpensLe_inverse'
Preorder.toLE
generateEquivalenceOpensLe_inverse'_obj_obj_right_as 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Discrete.as
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
generateEquivalenceOpensLe_inverse'
generateEquivalenceOpensLe_unitIso 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Equivalence.unitIso
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
SheafCondition.OpensLeCover
CategoryTheory.ObjectProperty.FullSubcategory.category
SheafCondition.instCategoryOpensLeCover
generateEquivalenceOpensLe
CategoryTheory.eqToIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
generateEquivalenceOpensLe_functor'
generateEquivalenceOpensLe_inverse'
isSheaf_iff_isSheafOpensLeCover 📖mathematicalIsSheaf
IsSheafOpensLeCover
IsSheaf.isSheafOpensLeCover
CategoryTheory.Presheaf.isSheaf_iff_isLimit
CategoryTheory.Sieve.generate_sieve
Equiv.nonempty_congr
whiskerIsoMapGenerateCocone_hom_hom 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.comp
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
generateEquivalenceOpensLe
Preorder.toLE
CategoryTheory.Functor.op
CategoryTheory.ObjectProperty.ι
CategoryTheory.Limits.Cone.whisker
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
SheafCondition.opensLeCoverCocone
CategoryTheory.Presieve.category
CategoryTheory.Presieve.diagram
CategoryTheory.Presieve.cocone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
whiskerIsoMapGenerateCocone
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.pt
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
whiskerIsoMapGenerateCocone_inv_hom 📖mathematicaliSup
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Limits.ConeMorphism.hom
Opposite
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Over
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.instCategoryOver
CategoryTheory.Sieve.arrows
CategoryTheory.Sieve.generate
presieveOfCoveringAux
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.comp
SheafCondition.OpensLeCover
SheafCondition.instCategoryOpensLeCover
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
generateEquivalenceOpensLe
Preorder.toLE
CategoryTheory.Functor.op
CategoryTheory.ObjectProperty.ι
CategoryTheory.Functor.mapCone
CategoryTheory.Presieve.category
CategoryTheory.Presieve.diagram
CategoryTheory.Limits.Cocone.op
CategoryTheory.Presieve.cocone
CategoryTheory.Limits.Cone.whisker
SheafCondition.opensLeCoverCocone
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
whiskerIsoMapGenerateCocone
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone.pt
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct

TopCat.Presheaf.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafOpensLeCover 📖mathematicalTopCat.Presheaf.IsSheafCategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.ObjectProperty.FullSubcategory
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Preorder.toLE
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.ObjectProperty.ι
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
TopCat.Presheaf.SheafCondition.opensLeCoverCocone
Equiv.nonempty_congr
CategoryTheory.Presheaf.isSheaf_iff_isLimit
TopCat.Presheaf.presieveOfCovering.mem_grothendieckTopology

TopCat.Presheaf.SheafCondition

Definitions

NameCategoryTheorems
OpensLeCover 📖CompOp
19 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, pairwiseToOpensLeCover_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, pairwiseToOpensLeCover_obj, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.generateEquivalenceOpensLe_functor, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, Alexandrov.lowerCone_π_app, instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, Alexandrov.projSup_obj, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, Alexandrov.projSup_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse
instCategoryOpensLeCover 📖CompOp
19 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, pairwiseToOpensLeCover_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, pairwiseToOpensLeCover_obj, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.generateEquivalenceOpensLe_functor, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, Alexandrov.lowerCone_π_app, instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, Alexandrov.projSup_obj, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, Alexandrov.projSup_map, TopCat.Presheaf.generateEquivalenceOpensLe_inverse
instInhabitedOpensLeCoverOfNonempty 📖CompOp
opensLeCoverCocone 📖CompOp
3 mathmath: TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, TopCat.Presheaf.IsSheaf.isSheafOpensLeCover

TopCat.Presheaf.SheafCondition.OpensLeCover

Definitions

NameCategoryTheorems
homToIndex 📖CompOp
index 📖CompOp

---

← Back to Index