Documentation Verification Report

PairwiseIntersections

📁 Source: Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean

Statistics

MetricCount
DefinitionsIsSheafPairwiseIntersections, IsSheafPreservesLimitPairwiseIntersections, pairwiseCoconeIso, pairwiseDiagramIso, pairwiseToOpensLeCover, pairwiseToOpensLeCoverMap, pairwiseToOpensLeCoverObj, isLimitOpensLeCoverEquivPairwise, interUnionPullbackCone, interUnionPullbackConeLift, isLimitPullbackCone, isProductOfDisjoint
12
TheoremsisSheafPairwiseIntersections, isSheafPreservesLimitPairwiseIntersections, instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover, pairwiseToOpensLeCover_map, pairwiseToOpensLeCover_obj, isSheafOpensLeCover_iff_isSheafPairwiseIntersections, isSheaf_iff_isSheafPairwiseIntersections, isSheaf_iff_isSheafPreservesLimitPairwiseIntersections, interUnionPullbackConeLift_left, interUnionPullbackConeLift_right, interUnionPullbackCone_fst, interUnionPullbackCone_pt, interUnionPullbackCone_snd
14
Total26

TopCat.Presheaf

Definitions

NameCategoryTheorems
IsSheafPairwiseIntersections 📖MathDef
2 mathmath: isSheaf_iff_isSheafPairwiseIntersections, isSheafOpensLeCover_iff_isSheafPairwiseIntersections
IsSheafPreservesLimitPairwiseIntersections 📖MathDef
1 mathmath: isSheaf_iff_isSheafPreservesLimitPairwiseIntersections
isLimitOpensLeCoverEquivPairwise 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafOpensLeCover_iff_isSheafPairwiseIntersections 📖mathematicalIsSheafOpensLeCover
IsSheafPairwiseIntersections
Equiv.nonempty_congr
isSheaf_iff_isSheafPairwiseIntersections 📖mathematicalIsSheaf
IsSheafPairwiseIntersections
isSheaf_iff_isSheafOpensLeCover
isSheafOpensLeCover_iff_isSheafPairwiseIntersections
isSheaf_iff_isSheafPreservesLimitPairwiseIntersections 📖mathematicalIsSheaf
IsSheafPreservesLimitPairwiseIntersections
IsSheaf.isSheafPreservesLimitPairwiseIntersections
isSheaf_iff_isSheafPairwiseIntersections

TopCat.Presheaf.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafPairwiseIntersections 📖mathematicalTopCat.Presheaf.IsSheafCategoryTheory.Limits.IsLimit
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Pairwise.cocone
Nonempty.map
isSheafOpensLeCover
isSheafPreservesLimitPairwiseIntersections 📖mathematicalTopCat.Presheaf.IsSheafCategoryTheory.Limits.PreservesLimit
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Pairwise
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.op
CategoryTheory.Pairwise.diagram
CategoryTheory.Limits.preservesLimit_of_preserves_limit_cone
isSheafPairwiseIntersections

TopCat.Presheaf.SheafCondition

Definitions

NameCategoryTheorems
pairwiseCoconeIso 📖CompOp
pairwiseDiagramIso 📖CompOp
pairwiseToOpensLeCover 📖CompOp
4 mathmath: pairwiseToOpensLeCover_map, pairwiseToOpensLeCover_obj, instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover
pairwiseToOpensLeCoverMap 📖CompOp
1 mathmath: pairwiseToOpensLeCover_map
pairwiseToOpensLeCoverObj 📖CompOp
1 mathmath: pairwiseToOpensLeCover_obj

Theorems

NameKindAssumesProvesValidatesDepends On
instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.Pairwise
CategoryTheory.Pairwise.instCategory
OpensLeCover
instCategoryOpensLeCover
pairwiseToOpensLeCover
CategoryTheory.isConnected_of_zigzag
instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover
le_inf
LE.le.trans
instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover 📖mathematicalCategoryTheory.StructuredArrow
CategoryTheory.Pairwise
CategoryTheory.Pairwise.instCategory
OpensLeCover
instCategoryOpensLeCover
pairwiseToOpensLeCover
pairwiseToOpensLeCover_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pairwise
CategoryTheory.Pairwise.instCategory
OpensLeCover
instCategoryOpensLeCover
pairwiseToOpensLeCover
pairwiseToOpensLeCoverMap
pairwiseToOpensLeCover_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Pairwise
CategoryTheory.Pairwise.instCategory
OpensLeCover
instCategoryOpensLeCover
pairwiseToOpensLeCover
pairwiseToOpensLeCoverObj

TopCat.Sheaf

Definitions

NameCategoryTheorems
interUnionPullbackCone 📖CompOp
3 mathmath: interUnionPullbackCone_snd, interUnionPullbackCone_fst, interUnionPullbackCone_pt
interUnionPullbackConeLift 📖CompOp
2 mathmath: interUnionPullbackConeLift_right, interUnionPullbackConeLift_left
isLimitPullbackCone 📖CompOp
isProductOfDisjoint 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
interUnionPullbackConeLift_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.homOfLE
inf_le_left
SemilatticeInf.toPartialOrder
inf_le_right
SemilatticeSup.toMax
Lattice.toSemilatticeSup
interUnionPullbackConeLift
SemilatticeSup.toPartialOrder
le_sup_left
CategoryTheory.Limits.PullbackCone.fst
inf_le_left
inf_le_right
le_sup_left
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.IsLimit.fac
TopCat.Presheaf.isSheaf_iff_isSheafPairwiseIntersections
CategoryTheory.Sheaf.cond
interUnionPullbackConeLift_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.homOfLE
inf_le_left
SemilatticeInf.toPartialOrder
inf_le_right
SemilatticeSup.toMax
Lattice.toSemilatticeSup
interUnionPullbackConeLift
SemilatticeSup.toPartialOrder
le_sup_right
CategoryTheory.Limits.PullbackCone.snd
inf_le_left
inf_le_right
le_sup_right
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.IsLimit.fac
TopCat.Presheaf.isSheaf_iff_isSheafPairwiseIntersections
CategoryTheory.Sheaf.cond
interUnionPullbackCone_fst 📖mathematicalCategoryTheory.Limits.PullbackCone.fst
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
inf_le_left
SemilatticeInf.toPartialOrder
inf_le_right
interUnionPullbackCone
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeSup.toPartialOrder
le_sup_left
inf_le_left
inf_le_right
interUnionPullbackCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
inf_le_left
SemilatticeInf.toPartialOrder
inf_le_right
interUnionPullbackCone
SemilatticeSup.toMax
Lattice.toSemilatticeSup
inf_le_left
inf_le_right
interUnionPullbackCone_snd 📖mathematicalCategoryTheory.Limits.PullbackCone.snd
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
inf_le_left
SemilatticeInf.toPartialOrder
inf_le_right
interUnionPullbackCone
SemilatticeSup.toMax
Lattice.toSemilatticeSup
SemilatticeSup.toPartialOrder
le_sup_right
inf_le_left
inf_le_right

---

← Back to Index