Documentation Verification Report

Sites

📁 Source: Mathlib/Topology/Sheaves/SheafCondition/Sites.lean

Statistics

MetricCount
DefinitionscoveringOfPresieve, presieveOfCovering, homOfIndex, indexOfHom, presieveOfCoveringAux, isTerminalOfEmpty, isTerminalOfEqEmpty, restrictHomEquivHom
8
TheoremscoverPreserving, coverDense_iff_isBasis, coverDense_inducedFunctor, iSup_eq_of_mem_grothendieck, coveringOfPresieve_apply, covering_presieve_eq_self, isSheaf_of_isOpenEmbedding, indexOfHom_spec, mem_grothendieckTopology, extend_hom_app, hom_ext, instIsContinuousCompGrothendieckTopology, compatiblePreserving, functor_isContinuous, compatiblePreserving_opens_map, coverPreserving_opens_map, instIsContinuousOpensCarrierMapGrothendieckTopology, instRepresentablyFlatOpensCarrierMap
18
Total26

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
coverPreserving 📖mathematicalIsOpenMap
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
CategoryTheory.CoverPreserving
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
functor
Set.mem_image_of_mem

TopCat.Opens

Theorems

NameKindAssumesProvesValidatesDepends On
coverDense_iff_isBasis 📖mathematicalCategoryTheory.Functor.IsCoverDense
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
TopologicalSpace.Opens.IsBasis
Set.range
CategoryTheory.Functor.obj
TopologicalSpace.Opens.isBasis_iff_nbhd
CategoryTheory.Functor.IsCoverDense.is_cover
coverDense_inducedFunctor 📖mathematicalTopologicalSpace.Opens.IsBasis
TopCat.carrier
TopCat.str
Set.range
TopologicalSpace.Opens
CategoryTheory.Functor.IsCoverDense
CategoryTheory.InducedCategory
CategoryTheory.InducedCategory.instCategory
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.inducedFunctor
Opens.grothendieckTopology
coverDense_iff_isBasis

TopCat.Presheaf

Definitions

NameCategoryTheorems
coveringOfPresieve 📖CompOp
3 mathmath: coveringOfPresieve.iSup_eq_of_mem_grothendieck, covering_presieve_eq_self, coveringOfPresieve_apply
presieveOfCovering 📖CompOp
2 mathmath: presieveOfCovering.indexOfHom_spec, presieveOfCovering.mem_grothendieckTopology
presieveOfCoveringAux 📖CompOp
13 mathmath: generateEquivalenceOpensLe_functor'_obj_obj, generateEquivalenceOpensLe_unitIso, generateEquivalenceOpensLe_inverse'_obj_obj_right_as, generateEquivalenceOpensLe_inverse'_obj_obj_hom, whiskerIsoMapGenerateCocone_inv_hom, covering_presieve_eq_self, generateEquivalenceOpensLe_functor, generateEquivalenceOpensLe_counitIso, whiskerIsoMapGenerateCocone_hom_hom, generateEquivalenceOpensLe_inverse'_obj_obj_left, generateEquivalenceOpensLe_functor'_map, generateEquivalenceOpensLe_inverse'_map, generateEquivalenceOpensLe_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
coveringOfPresieve_apply 📖mathematicalcoveringOfPresieve
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
covering_presieve_eq_self 📖mathematicalpresieveOfCoveringAux
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
coveringOfPresieve
Set.ext
Preorder.subsingleton_hom
isSheaf_of_isOpenEmbedding 📖mathematicalTopology.IsOpenEmbedding
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
IsSheaf
CategoryTheory.Functor.comp
Opposite
TopologicalSpace.Opens
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
IsOpenMap.functor
Topology.IsOpenEmbedding.isOpenMap
Topology.IsOpenEmbedding.isOpenMap
Topology.IsOpenEmbedding.functor_isContinuous
CategoryTheory.Functor.op_comp_isSheaf

TopCat.Presheaf.coveringOfPresieve

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_eq_of_mem_grothendieck 📖mathematicalCategoryTheory.Sieve
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Opens.grothendieckTopology
CategoryTheory.Sieve.generate
iSup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.coveringOfPresieve
le_antisymm
iSup_le
TopologicalSpace.Opens.mem_iSup

TopCat.Presheaf.presieveOfCovering

Definitions

NameCategoryTheorems
homOfIndex 📖CompOp
indexOfHom 📖CompOp
1 mathmath: indexOfHom_spec

Theorems

NameKindAssumesProvesValidatesDepends On
indexOfHom_spec 📖mathematicalTopologicalSpace.Opens
TopCat.carrier
TopCat.str
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.presieveOfCovering
indexOfHom
mem_grothendieckTopology 📖mathematicalCategoryTheory.Sieve
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
Opens.grothendieckTopology
CategoryTheory.Sieve.generate
TopCat.Presheaf.presieveOfCovering
TopologicalSpace.Opens.mem_iSup
CategoryTheory.Category.id_comp

TopCat.Sheaf

Definitions

NameCategoryTheorems
isTerminalOfEmpty 📖CompOp
isTerminalOfEqEmpty 📖CompOp
restrictHomEquivHom 📖CompOp
1 mathmath: extend_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
extend_hom_app 📖mathematicalTopologicalSpace.Opens.IsBasis
TopCat.carrier
TopCat.str
Set.range
TopologicalSpace.Opens
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.InducedCategory
CategoryTheory.InducedCategory.instCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.inducedFunctor
TopCat.Presheaf
TopCat.instCategoryPresheaf
EquivLike.toFunLike
Equiv.instEquivLike
restrictHomEquivHom
Opposite.op
Equiv.left_inv
hom_ext 📖TopologicalSpace.Opens.IsBasis
TopCat.carrier
TopCat.str
Set.range
TopologicalSpace.Opens
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
Equiv.injective
CategoryTheory.NatTrans.ext'

TopologicalSpace.Opens

Theorems

NameKindAssumesProvesValidatesDepends On
instIsContinuousCompGrothendieckTopology 📖mathematicalCategoryTheory.Functor.IsContinuous
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
CategoryTheory.Functor.comp
Opens.grothendieckTopology
CategoryTheory.Functor.isContinuous_comp

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
compatiblePreserving 📖mathematicalTopology.IsOpenEmbedding
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
CategoryTheory.CompatiblePreserving
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
IsOpenMap.functor
isOpenMap
CategoryTheory.compatiblePreservingOfDownwardsClosed
isOpenMap
IsOpenMap.functorFullOfMono
TopCat.mono_iff_injective
Topology.IsEmbedding.injective
toIsEmbedding
IsOpenMap.functor_faithful
TopologicalSpace.Opens.ext
Set.image_preimage_eq_of_subset
functor_isContinuous 📖mathematicalTopology.IsOpenEmbedding
TopCat.carrier
TopCat.str
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
CategoryTheory.Functor.IsContinuous
TopologicalSpace.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
IsOpenMap.functor
isOpenMap
Opens.grothendieckTopology
CategoryTheory.Functor.isContinuous_of_coverPreserving
isOpenMap
compatiblePreserving
IsOpenMap.coverPreserving

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
compatiblePreserving_opens_map 📖mathematicalCategoryTheory.CompatiblePreserving
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
TopologicalSpace.Opens.map
CategoryTheory.compatiblePreservingOfFlat
instRepresentablyFlatOpensCarrierMap
coverPreserving_opens_map 📖mathematicalCategoryTheory.CoverPreserving
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
TopologicalSpace.Opens.map
Preorder.subsingleton_hom
instIsContinuousOpensCarrierMapGrothendieckTopology 📖mathematicalCategoryTheory.Functor.IsContinuous
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
Opens.grothendieckTopology
CategoryTheory.Functor.isContinuous_of_coverPreserving
compatiblePreserving_opens_map
coverPreserving_opens_map
instRepresentablyFlatOpensCarrierMap 📖mathematicalCategoryTheory.RepresentablyFlat
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
le_inf
inf_le_left
inf_le_right
CategoryTheory.Category.id_comp
Preorder.subsingleton_hom
le_top

---

← Back to Index