Documentation Verification Report

UniqueGluing

📁 Source: Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean

Statistics

MetricCount
DefinitionsIsCompatible, sectionPairwise, IsGluing, IsSheafUniqueGluing, objPairwiseOfFamily
5
TheoremsisSheafUniqueGluing, isSheafUniqueGluing_types, isGluing_iff_pairwise, isSheaf_iff_isSheafUniqueGluing, isSheaf_iff_isSheafUniqueGluing_types, isSheaf_of_isSheafUniqueGluing_types, eq_of_locally_eq, eq_of_locally_eq', eq_of_locally_eq_iff, eq_of_locally_eq₂, existsUnique_gluing, existsUnique_gluing'
12
Total17

TopCat.Presheaf

Definitions

NameCategoryTheorems
IsCompatible 📖MathDef
IsGluing 📖MathDef
4 mathmath: IsSheaf.isSheafUniqueGluing_types, TopCat.Sheaf.existsUnique_gluing, isGluing_iff_pairwise, IsSheaf.isSheafUniqueGluing
IsSheafUniqueGluing 📖MathDef
2 mathmath: isSheaf_iff_isSheafUniqueGluing_types, isSheaf_iff_isSheafUniqueGluing
objPairwiseOfFamily 📖CompOp
1 mathmath: isGluing_iff_pairwise

Theorems

NameKindAssumesProvesValidatesDepends On
isGluing_iff_pairwise 📖mathematicalIsGluing
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Pairwise
CategoryTheory.Category.opposite
CategoryTheory.Pairwise.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.Pairwise.diagram
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cocone.op
CategoryTheory.Pairwise.cocone
CategoryTheory.Limits.Cone.π
objPairwiseOfFamily
CategoryTheory.Limits.Cone.w
isSheaf_iff_isSheafUniqueGluing 📖mathematicalIsSheaf
IsSheafUniqueGluing
isSheaf_iff_isSheaf_comp'
isSheaf_iff_isSheafUniqueGluing_types
isSheaf_iff_isSheafUniqueGluing_types 📖mathematicalIsSheaf
CategoryTheory.types
IsSheafUniqueGluing
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
Subtype.prop
isSheaf_of_isSheafUniqueGluing_types 📖mathematicalIsSheafUniqueGluing
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
IsSheafisSheaf_iff_isSheafUniqueGluing_types

TopCat.Presheaf.IsCompatible

Definitions

NameCategoryTheorems
sectionPairwise 📖CompOp

TopCat.Presheaf.IsSheaf

Theorems

NameKindAssumesProvesValidatesDepends On
isSheafUniqueGluing 📖mathematicalTopCat.Presheaf.IsSheaf
TopCat.Presheaf.IsCompatible
ExistsUnique
CategoryTheory.ToType
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.IsGluing
isSheafUniqueGluing_types
TopCat.Presheaf.isSheaf_iff_isSheaf_comp'
isSheafUniqueGluing_types 📖mathematicalTopCat.Presheaf.IsSheaf
CategoryTheory.types
TopCat.Presheaf.IsCompatible
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
ExistsUnique
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.IsGluing
CategoryTheory.Limits.Types.isLimit_iff
isSheafPairwiseIntersections
Subtype.prop

TopCat.Sheaf

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_locally_eq 📖DFunLike.coe
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
TopologicalSpace.Opens.leSupr
CategoryTheory.Functor.map_comp
existsUnique_gluing
eq_of_locally_eq' 📖TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
le_antisymm
iSup_le
eq_of_locally_eq
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Functor.map_comp
CategoryTheory.eqToHom_op
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Functor.map_id
CategoryTheory.ConcreteCategory.id_apply
eq_of_locally_eq_iff 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
TopologicalSpace.Opens.leSupr
eq_of_locally_eq
eq_of_locally_eq₂ 📖TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
DFunLike.coe
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.Sheaf.val
Opens.grothendieckTopology
Opposite.op
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
eq_of_locally_eq'
le_trans
sup_le_iff
le_iSup
existsUnique_gluing 📖mathematicalTopCat.Presheaf.IsCompatible
CategoryTheory.Sheaf.val
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opens.grothendieckTopology
ExistsUnique
CategoryTheory.ToType
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.IsGluing
TopCat.Presheaf.IsSheaf.isSheafUniqueGluing
CategoryTheory.Sheaf.cond
existsUnique_gluing' 📖mathematicalTopologicalSpace.Opens
TopCat.carrier
TopCat.str
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.Presheaf.IsCompatible
CategoryTheory.Sheaf.val
Preorder.smallCategory
Opens.grothendieckTopology
ExistsUnique
CategoryTheory.ToType
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
le_antisymm
iSup_le
existsUnique_gluing
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Functor.map_comp
CategoryTheory.eqToHom_op
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Functor.map_id
CategoryTheory.ConcreteCategory.id_apply

---

← Back to Index