Documentation Verification Report

Skyscraper

📁 Source: Mathlib/Topology/Sheaves/Skyscraper.lean

Statistics

MetricCount
Definitionsmap', counit, fromStalk, toSkyscraperPresheaf, unit, skyscraperPresheaf, skyscraperPresheafCocone, skyscraperPresheafCoconeIsColimitOfNotSpecializes, skyscraperPresheafCoconeIsColimitOfSpecializes, skyscraperPresheafCoconeOfSpecializes, skyscraperPresheafFunctor, skyscraperPresheafStalkAdjunction, skyscraperPresheafStalkOfNotSpecializes, skyscraperPresheafStalkOfNotSpecializesIsTerminal, skyscraperPresheafStalkOfSpecializes, skyscraperSheaf, skyscraperSheafFunctor, stalkSkyscraperSheafAdjunction
18
Theoremsmap'_app, map'_comp, map'_id, counit_app, fromStalk_to_skyscraper, germ_fromStalk, germ_fromStalk_assoc, toSkyscraperPresheaf_app, to_skyscraper_fromStalk, unit_app, germ_skyscraperPresheafStalkOfSpecializes_hom, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, instIsLeftAdjointPresheafStalkFunctor, instIsRightAdjointPresheafSkyscraperPresheafFunctorOfHasColimits, instIsRightAdjointSheafSkyscraperSheafFunctorOfHasColimits, skyscraperPresheafCoconeOfSpecializes_pt, skyscraperPresheafCoconeOfSpecializes_ι_app, skyscraperPresheafCocone_pt, skyscraperPresheafCocone_ι_app, skyscraperPresheafFunctor_map, skyscraperPresheafFunctor_obj, skyscraperPresheaf_eq_pushforward, skyscraperPresheaf_isSheaf, skyscraperPresheaf_map, skyscraperPresheaf_obj
25
Total43

SkyscraperPresheafFunctor

Definitions

NameCategoryTheorems
map' 📖CompOp
4 mathmath: map'_comp, map'_app, skyscraperPresheafFunctor_map, map'_id

Theorems

NameKindAssumesProvesValidatesDepends On
map'_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Opposite.unop
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Limits.terminal
CategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.terminalIsTerminal
map'_comp 📖mathematicalmap'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheaf
TopCat.Presheaf.ext
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.IsTerminal.comp_from
map'_id 📖mathematicalmap'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheaf
TopCat.Presheaf.ext
CategoryTheory.eqToHom_naturality
CategoryTheory.Category.comp_id
CategoryTheory.eqToHom_trans
CategoryTheory.Limits.IsTerminal.from_self

StalkSkyscraperPresheafAdjunctionAuxs

Definitions

NameCategoryTheorems
counit 📖CompOp
1 mathmath: counit_app
fromStalk 📖CompOp
4 mathmath: germ_fromStalk, to_skyscraper_fromStalk, germ_fromStalk_assoc, fromStalk_to_skyscraper
toSkyscraperPresheaf 📖CompOp
4 mathmath: to_skyscraper_fromStalk, unit_app, fromStalk_to_skyscraper, toSkyscraperPresheaf_app
unit 📖CompOp
1 mathmath: unit_app

Theorems

NameKindAssumesProvesValidatesDepends On
counit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheafFunctor
TopCat.Presheaf.stalkFunctor
CategoryTheory.Functor.id
counit
CategoryTheory.Iso.hom
TopCat.Presheaf.stalk
skyscraperPresheaf
skyscraperPresheafStalkOfSpecializes
fromStalk_to_skyscraper 📖mathematicalfromStalk
toSkyscraperPresheaf
TopCat.Presheaf.stalk_hom_ext
germ_fromStalk
toSkyscraperPresheaf_app
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
TopCat.Presheaf.germ.eq_1
germ_fromStalk 📖mathematicalTopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
fromStalk
skyscraperPresheaf
CategoryTheory.NatTrans.app
CategoryTheory.eqToHom
Opposite.unop
CategoryTheory.Limits.terminal
CategoryTheory.Limits.colimit.ι_desc
germ_fromStalk_assoc 📖mathematicalTopCat.carrier
TopologicalSpace.Opens
TopCat.str
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
fromStalk
skyscraperPresheaf
CategoryTheory.NatTrans.app
CategoryTheory.eqToHom
Opposite.unop
CategoryTheory.Limits.terminal
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
germ_fromStalk
toSkyscraperPresheaf_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
toSkyscraperPresheaf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Opposite.unop
CategoryTheory.CategoryStruct.comp
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
CategoryTheory.eqToHom
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Limits.terminal
CategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.terminalIsTerminal
to_skyscraper_fromStalk 📖mathematicaltoSkyscraperPresheaf
fromStalk
CategoryTheory.NatTrans.ext
CategoryTheory.Category.assoc
germ_fromStalk
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsTerminal.hom_ext
unit_app 📖mathematicalCategoryTheory.NatTrans.app
TopCat.Presheaf
TopCat.instCategoryPresheaf
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
TopCat.Presheaf.stalkFunctor
skyscraperPresheafFunctor
unit
toSkyscraperPresheaf
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.stalk

(root)

Definitions

NameCategoryTheorems
skyscraperPresheaf 📖CompOp
18 mathmath: skyscraperPresheaf_obj, StalkSkyscraperPresheafAdjunctionAuxs.counit_app, skyscraperPresheafCocone_pt, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk, skyscraperPresheafFunctor_obj, SkyscraperPresheafFunctor.map'_comp, StalkSkyscraperPresheafAdjunctionAuxs.germ_fromStalk_assoc, skyscraperPresheafCocone_ι_app, skyscraperPresheaf_eq_pushforward, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, skyscraperPresheaf_isSheaf, skyscraperPresheafCoconeOfSpecializes_ι_app, skyscraperPresheafCoconeOfSpecializes_pt, SkyscraperPresheafFunctor.map'_app, germ_skyscraperPresheafStalkOfSpecializes_hom, skyscraperPresheaf_map, SkyscraperPresheafFunctor.map'_id, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app
skyscraperPresheafCocone 📖CompOp
2 mathmath: skyscraperPresheafCocone_pt, skyscraperPresheafCocone_ι_app
skyscraperPresheafCoconeIsColimitOfNotSpecializes 📖CompOp
skyscraperPresheafCoconeIsColimitOfSpecializes 📖CompOp
skyscraperPresheafCoconeOfSpecializes 📖CompOp
2 mathmath: skyscraperPresheafCoconeOfSpecializes_ι_app, skyscraperPresheafCoconeOfSpecializes_pt
skyscraperPresheafFunctor 📖CompOp
5 mathmath: StalkSkyscraperPresheafAdjunctionAuxs.counit_app, skyscraperPresheafFunctor_obj, StalkSkyscraperPresheafAdjunctionAuxs.unit_app, skyscraperPresheafFunctor_map, instIsRightAdjointPresheafSkyscraperPresheafFunctorOfHasColimits
skyscraperPresheafStalkAdjunction 📖CompOp
skyscraperPresheafStalkOfNotSpecializes 📖CompOp
skyscraperPresheafStalkOfNotSpecializesIsTerminal 📖CompOp
skyscraperPresheafStalkOfSpecializes 📖CompOp
3 mathmath: StalkSkyscraperPresheafAdjunctionAuxs.counit_app, germ_skyscraperPresheafStalkOfSpecializes_hom_assoc, germ_skyscraperPresheafStalkOfSpecializes_hom
skyscraperSheaf 📖CompOp
skyscraperSheafFunctor 📖CompOp
1 mathmath: instIsRightAdjointSheafSkyscraperSheafFunctorOfHasColimits
stalkSkyscraperSheafAdjunction 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
germ_skyscraperPresheafStalkOfSpecializes_hom 📖mathematicalSpecializes
TopCat.carrier
TopCat.str
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
CategoryTheory.Iso.hom
skyscraperPresheafStalkOfSpecializes
CategoryTheory.eqToHom
Set
Set.instMembership
TopologicalSpace.Opens.carrier
Opposite.unop
CategoryTheory.Limits.terminal
Specializes.mem_open
TopologicalSpace.Opens.is_open'
CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom
germ_skyscraperPresheafStalkOfSpecializes_hom_assoc 📖mathematicalSpecializes
TopCat.carrier
TopCat.str
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
CategoryTheory.Iso.hom
skyscraperPresheafStalkOfSpecializes
CategoryTheory.eqToHom
Set
Set.instMembership
TopologicalSpace.Opens.carrier
CategoryTheory.Limits.terminal
Opposite.unop
Specializes.mem_open
TopologicalSpace.Opens.is_open'
Specializes.mem_open
TopologicalSpace.Opens.is_open'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
germ_skyscraperPresheafStalkOfSpecializes_hom
instIsLeftAdjointPresheafStalkFunctor 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
TopCat.Presheaf
TopCat.instCategoryPresheaf
TopCat.Presheaf.stalkFunctor
CategoryTheory.Adjunction.isLeftAdjoint
instIsRightAdjointPresheafSkyscraperPresheafFunctorOfHasColimits 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheafFunctor
CategoryTheory.Adjunction.isRightAdjoint
instIsRightAdjointSheafSkyscraperSheafFunctorOfHasColimits 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
TopCat.Sheaf
TopCat.instCategorySheaf
skyscraperSheafFunctor
CategoryTheory.Adjunction.isRightAdjoint
skyscraperPresheafCoconeOfSpecializes_pt 📖mathematicalSpecializes
TopCat.carrier
TopCat.str
CategoryTheory.Limits.Cocone.pt
Opposite
TopologicalSpace.OpenNhds
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.OpenNhds.partialOrder
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
TopologicalSpace.OpenNhds.inclusion
skyscraperPresheaf
skyscraperPresheafCoconeOfSpecializes
skyscraperPresheafCoconeOfSpecializes_ι_app 📖mathematicalSpecializes
TopCat.carrier
TopCat.str
CategoryTheory.NatTrans.app
Opposite
TopologicalSpace.OpenNhds
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.OpenNhds.partialOrder
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
TopologicalSpace.OpenNhds.inclusion
skyscraperPresheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
skyscraperPresheafCoconeOfSpecializes
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
skyscraperPresheafCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
Opposite
TopologicalSpace.OpenNhds
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.OpenNhds.partialOrder
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
TopologicalSpace.OpenNhds.inclusion
skyscraperPresheaf
skyscraperPresheafCocone
CategoryTheory.Limits.terminal
skyscraperPresheafCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
TopologicalSpace.OpenNhds
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.OpenNhds.partialOrder
CategoryTheory.Functor.comp
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
TopologicalSpace.OpenNhds.inclusion
skyscraperPresheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.terminal
CategoryTheory.Limits.Cocone.ι
skyscraperPresheafCocone
CategoryTheory.Limits.terminal.from
skyscraperPresheafFunctor_map 📖mathematicalCategoryTheory.Functor.map
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheafFunctor
SkyscraperPresheafFunctor.map'
skyscraperPresheafFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
TopCat.Presheaf
TopCat.instCategoryPresheaf
skyscraperPresheafFunctor
skyscraperPresheaf
skyscraperPresheaf_eq_pushforward 📖mathematicalskyscraperPresheaf
CategoryTheory.Functor.obj
TopCat.Presheaf
TopCat.of
TopCat.carrier
instTopologicalSpacePUnit
TopCat.instCategoryPresheaf
TopCat.str
TopCat.Presheaf.pushforward
TopCat.ofHom
ContinuousMap.const
skyscraperPresheaf_isSheaf 📖mathematicalTopCat.Presheaf.IsSheaf
skyscraperPresheaf
TopCat.Presheaf.isSheaf_iso_iff
skyscraperPresheaf_eq_pushforward
TopCat.Sheaf.pushforward_sheaf_of_sheaf
TopCat.Presheaf.isSheaf_on_punit_of_isTerminal
Set.notMem_empty
skyscraperPresheaf_map 📖mathematicalCategoryTheory.Functor.map
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Opposite.unop
CategoryTheory.Limits.terminal
CategoryTheory.eqToHom
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.terminalIsTerminal
skyscraperPresheaf_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
skyscraperPresheaf
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
Opposite.unop
CategoryTheory.Limits.terminal

---

← Back to Index