Documentation Verification Report

ShrinkingLemma

πŸ“ Source: Mathlib/Topology/ShrinkingLemma.lean

Statistics

MetricCount
DefinitionsPartialRefinement, carrier, chainSup, chainSupCarrier, find, instCoeFunForallSet, instPartialOrder, toFun
8
Theoremsapply_eq, apply_eq_of_chain, closure_subset, exists_gt, ext, ext_iff, find_apply_of_mem, find_mem, isOpen, le_chainSup, mem_find_carrier_iff, pred_of_mem, subset, subset_iUnion, exists_gt_t2space, exists_iUnion_eq_closed_subset, exists_iUnion_eq_closure_subset, exists_subset_iUnion_closed_subset, exists_subset_iUnion_closure_subset, exists_subset_iUnion_closure_subset_t2space, exists_subset_iUnion_compact_subset_t2space
21
Total29

ShrinkingLemma

Definitions

NameCategoryTheorems
PartialRefinement πŸ“–CompData
2 mathmath: PartialRefinement.exists_gt, exists_gt_t2space

ShrinkingLemma.PartialRefinement

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
2 mathmath: ext_iff, mem_find_carrier_iff
chainSup πŸ“–CompOp
1 mathmath: le_chainSup
chainSupCarrier πŸ“–CompOp
1 mathmath: mem_find_carrier_iff
find πŸ“–CompOp
3 mathmath: find_apply_of_mem, find_mem, mem_find_carrier_iff
instCoeFunForallSet πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
2 mathmath: exists_gt, exists_gt_t2space
toFun πŸ“–CompOp
10 mathmath: subset, apply_eq, find_apply_of_mem, pred_of_mem, closure_subset, exists_gt_t2space, subset_iUnion, ext_iff, isOpen, apply_eq_of_chain

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq πŸ“–mathematicalSet
Set.instMembership
carrier
toFunβ€”β€”
apply_eq_of_chain πŸ“–mathematicalIsChain
ShrinkingLemma.PartialRefinement
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instMembership
carrier
toFunβ€”IsChain.total
instReflLe
closure_subset πŸ“–mathematicalSet
Set.instMembership
carrier
Set.instHasSubset
closure
toFun
β€”β€”
exists_gt πŸ“–mathematicalSet
Set.instMembership
carrier
Top.top
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
ShrinkingLemma.PartialRefinement
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”Set.mem_iUnion
subset_iUnion
em
IsClosed.inter
isClosed_biInter
isClosed_compl_iff
isOpen
normal_exists_closure_subset
eq_or_ne
Function.update_self
Function.update_of_ne
Set.mem_biInter
Mathlib.Tactic.Push.not_and_eq
apply_eq
closure_subset
Set.mem_insert_iff
Set.subset_insert
Set.mem_insert
ext πŸ“–β€”toFun
carrier
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toFun
carrier
β€”ext
find_apply_of_mem πŸ“–mathematicalIsChain
ShrinkingLemma.PartialRefinement
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set.Nonempty
Set
Set.instMembership
carrier
toFun
find
β€”apply_eq_of_chain
find_mem
mem_find_carrier_iff
Set.mem_iUnionβ‚‚
find_mem πŸ“–mathematicalSet.Nonempty
ShrinkingLemma.PartialRefinement
Set
Set.instMembership
find
β€”find.eq_1
Set.Nonempty.some_mem
isOpen πŸ“–mathematicalβ€”IsOpen
toFun
β€”β€”
le_chainSup πŸ“–mathematicalIsChain
ShrinkingLemma.PartialRefinement
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set.Nonempty
Set.Finite
setOf
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
chainSupβ€”Set.mem_biUnion
find_apply_of_mem
mem_find_carrier_iff πŸ“–mathematicalSet.Nonempty
ShrinkingLemma.PartialRefinement
Set
Set.instMembership
carrier
find
chainSupCarrier
β€”find.eq_1
Set.mem_iUnionβ‚‚
Mathlib.Tactic.Push.not_and_eq
Set.Nonempty.some_mem
pred_of_mem πŸ“–mathematicalSet
Set.instMembership
carrier
toFunβ€”β€”
subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
toFun
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset
Eq.le
apply_eq
subset_iUnion πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.iUnion
toFun
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_gt_t2space πŸ“–mathematicalIsCompact
Set
Set.instMembership
ShrinkingLemma.PartialRefinement.carrier
closure
ShrinkingLemma.PartialRefinement
Preorder.toLT
PartialOrder.toPreorder
ShrinkingLemma.PartialRefinement.instPartialOrder
ShrinkingLemma.PartialRefinement.toFun
β€”IsCompact.of_isClosed_subset
isOpen_biUnion
ShrinkingLemma.PartialRefinement.isOpen
IsClosed.inter
IsCompact.isClosed
IsOpen.isClosed_compl
Set.inter_subset_left
Set.notMem_of_mem_compl
Set.mem_of_mem_inter_right
Set.compl_iUnion
Set.mem_iInterβ‚‚
Set.mem_iUnion
ShrinkingLemma.PartialRefinement.subset_iUnion
Set.mem_of_mem_inter_left
exists_open_between_and_isCompact_closure
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
T2Space.r1Space
eq_or_ne
Function.update_self
Function.update_of_ne
Set.mem_iInterβ‚‚_of_mem
Mathlib.Tactic.Push.not_and_eq
subset_trans
Set.instIsTransSubset
ShrinkingLemma.PartialRefinement.subset
ShrinkingLemma.PartialRefinement.closure_subset
Set.mem_insert_iff
ShrinkingLemma.PartialRefinement.pred_of_mem
ShrinkingLemma.PartialRefinement.apply_eq
Set.subset_insert
Set.mem_insert
exists_iUnion_eq_closed_subset πŸ“–mathematicalIsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.iUnion
Set.univ
IsClosed
Set.instHasSubset
β€”exists_subset_iUnion_closed_subset
isClosed_univ
Eq.ge
Set.univ_subset_iff
exists_iUnion_eq_closure_subset πŸ“–mathematicalIsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.iUnion
Set.univ
Set.instHasSubset
closure
β€”exists_subset_iUnion_closure_subset
isClosed_univ
Eq.ge
Set.univ_subset_iff
exists_subset_iUnion_closed_subset πŸ“–mathematicalIsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
IsClosedβ€”exists_subset_iUnion_closure_subset
Set.Subset.trans
Set.iUnion_mono
subset_closure
isClosed_closure
exists_subset_iUnion_closure_subset πŸ“–mathematicalIsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
closureβ€”ShrinkingLemma.PartialRefinement.le_chainSup
zorn_le_nonempty
ShrinkingLemma.PartialRefinement.exists_gt
IsMax.not_lt
ShrinkingLemma.PartialRefinement.subset_iUnion
ShrinkingLemma.PartialRefinement.isOpen
ShrinkingLemma.PartialRefinement.closure_subset
exists_subset_iUnion_closure_subset_t2space πŸ“–mathematicalIsCompact
IsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
closureβ€”ShrinkingLemma.PartialRefinement.le_chainSup
zorn_le_nonempty
exists_gt_t2space
IsMax.not_lt
ShrinkingLemma.PartialRefinement.subset_iUnion
ShrinkingLemma.PartialRefinement.isOpen
ShrinkingLemma.PartialRefinement.closure_subset
ShrinkingLemma.PartialRefinement.pred_of_mem
exists_subset_iUnion_compact_subset_t2space πŸ“–mathematicalIsCompact
IsOpen
Set.Finite
setOf
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
IsClosedβ€”exists_subset_iUnion_closure_subset_t2space
Set.Subset.trans
Set.iUnion_mono
subset_closure

---

← Back to Index