Documentation Verification Report

Specialization

📁 Source: Mathlib/Topology/Specialization.lean

Statistics

MetricCount
DefinitionsSpecialization, instPartialOrder, instPreorder, map, ofEquiv, rec, toEquiv, homeoWithUpperSetTopologyorderIso, orderIsoSpecializationWithUpperSetTopology, topToPreord
10
TheoremsisOpen_toEquiv_preimage, isUpperSet_ofEquiv_preimage, map_comp, map_id, ofEquiv_inj, ofEquiv_specializes_ofEquiv, ofEquiv_symm, ofEquiv_toEquiv, toEquiv_inj, toEquiv_le_toEquiv, toEquiv_ofEquiv, toEquiv_symm, topToPreord_map, topToPreord_obj_coe
14
Total24

Specialization

Definitions

NameCategoryTheorems
instPartialOrder 📖CompOp
instPreorder 📖CompOp
8 mathmath: isOpen_toEquiv_preimage, toEquiv_le_toEquiv, topToPreord_map, isUpperSet_ofEquiv_preimage, ofEquiv_specializes_ofEquiv, map_id, alexDiscEquivPreord_counitIso, map_comp
map 📖CompOp
3 mathmath: topToPreord_map, map_id, map_comp
ofEquiv 📖CompOp
7 mathmath: ofEquiv_toEquiv, ofEquiv_inj, isUpperSet_ofEquiv_preimage, toEquiv_symm, ofEquiv_specializes_ofEquiv, ofEquiv_symm, toEquiv_ofEquiv
rec 📖CompOp
toEquiv 📖CompOp
7 mathmath: ofEquiv_toEquiv, isOpen_toEquiv_preimage, toEquiv_inj, toEquiv_le_toEquiv, toEquiv_symm, ofEquiv_symm, toEquiv_ofEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_toEquiv_preimage 📖mathematicalIsOpen
Set.preimage
Specialization
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
IsUpperSet
Preorder.toLE
instPreorder
isOpen_iff_forall_specializes
forall_swap
isUpperSet_ofEquiv_preimage 📖mathematicalIsUpperSet
Specialization
Preorder.toLE
instPreorder
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofEquiv
IsOpen
isOpen_toEquiv_preimage
map_comp 📖mathematicalmap
ContinuousMap.comp
OrderHom.comp
Specialization
instPreorder
map_id 📖mathematicalmap
ContinuousMap.id
OrderHom.id
Specialization
instPreorder
ofEquiv_inj 📖mathematicalDFunLike.coe
Equiv
Specialization
EquivLike.toFunLike
Equiv.instEquivLike
ofEquiv
ofEquiv_specializes_ofEquiv 📖mathematicalSpecializes
DFunLike.coe
Equiv
Specialization
EquivLike.toFunLike
Equiv.instEquivLike
ofEquiv
Preorder.toLE
instPreorder
ofEquiv_symm 📖mathematicalEquiv.symm
Specialization
ofEquiv
toEquiv
ofEquiv_toEquiv 📖mathematicalDFunLike.coe
Equiv
Specialization
EquivLike.toFunLike
Equiv.instEquivLike
ofEquiv
toEquiv
toEquiv_inj 📖mathematicalDFunLike.coe
Equiv
Specialization
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
toEquiv_le_toEquiv 📖mathematicalSpecialization
Preorder.toLE
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
Specializes
toEquiv_ofEquiv 📖mathematicalDFunLike.coe
Equiv
Specialization
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
ofEquiv
toEquiv_symm 📖mathematicalEquiv.symm
Specialization
toEquiv
ofEquiv

(root)

Definitions

NameCategoryTheorems
Specialization 📖CompOp
15 mathmath: Specialization.ofEquiv_toEquiv, Specialization.isOpen_toEquiv_preimage, Specialization.toEquiv_inj, Specialization.toEquiv_le_toEquiv, Specialization.ofEquiv_inj, topToPreord_map, Specialization.isUpperSet_ofEquiv_preimage, topToPreord_obj_coe, Specialization.toEquiv_symm, Specialization.ofEquiv_specializes_ofEquiv, Specialization.map_id, alexDiscEquivPreord_counitIso, Specialization.ofEquiv_symm, Specialization.map_comp, Specialization.toEquiv_ofEquiv
homeoWithUpperSetTopologyorderIso 📖CompOp
1 mathmath: alexDiscEquivPreord_unitIso
orderIsoSpecializationWithUpperSetTopology 📖CompOp
1 mathmath: alexDiscEquivPreord_counitIso
topToPreord 📖CompOp
5 mathmath: alexDiscEquivPreord_unitIso, topToPreord_map, topToPreord_obj_coe, alexDiscEquivPreord_counitIso, alexDiscEquivPreord_functor

Theorems

NameKindAssumesProvesValidatesDepends On
topToPreord_map 📖mathematicalCategoryTheory.Functor.map
TopCat
TopCat.instCategory
Preord
Preord.instCategory
topToPreord
Preord.ofHom
Specialization
TopCat.carrier
Specialization.instPreorder
TopCat.str
Specialization.map
TopCat.Hom.hom
topToPreord_obj_coe 📖mathematicalPreord.carrier
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
Preord
Preord.instCategory
topToPreord
Specialization
TopCat.carrier

---

← Back to Index