Documentation Verification Report

Prespectral

📁 Source: Mathlib/Topology/Spectral/Prespectral.lean

Statistics

MetricCount
DefinitionsPrespectralSpace, opensEquiv
2
Theoremsexists_opens_image_eq_of_prespectralSpace, exists_isCompact_and_isOpen_between, isBasis_opens, isTopologicalBasis, of_isClosedEmbedding, of_isInducing, of_isOpenCover, of_isTopologicalBasis, of_isTopologicalBasis', sigma, prespectralSpace, instLocallyCompactSpaceOfPrespectralSpace, instPrespectralSpaceOfNoetherianSpace, instTotallySeparatedSpaceOfT2SpaceOfPrespectralSpace, prespectralSpace_iff
15
Total17

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_opens_image_eq_of_prespectralSpace 📖mathematicalContinuous
IsOpenMap
Set
Set.instHasSubset
Set.range
IsOpen
IsCompact
TopologicalSpace.Opens.carrier
Set.image
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
IsOpen.preimage
TopologicalSpace.Opens.isBasis_iff_cover
PrespectralSpace.isBasis_opens
IsCompact.elim_finite_subcover
TopologicalSpace.Opens.is_open'
TopologicalSpace.Opens.mem_sSup
Set.mem_iUnion
isOpen_iUnion
Set.iUnion_congr_Prop
Set.Finite.isCompact_biUnion
Finset.finite_toSet
Set.iUnion_coe_set
Set.image_iUnion
subset_antisymm
Set.instAntisymmSubset

PrespectralSpace

Definitions

NameCategoryTheorems
opensEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isCompact_and_isOpen_between 📖IsCompact
IsOpen
Set
Set.instHasSubset
IsCompact.induction_on
Set.instReflSubset
subset_trans
Set.instIsTransSubset
IsCompact.union
IsOpen.union
Set.union_subset_union
Set.union_subset
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
isTopologicalBasis
mem_nhdsWithin
Set.inter_subset_left
subset_rfl
isBasis_opens 📖mathematicalTopologicalSpace.Opens.IsBasis
setOf
TopologicalSpace.Opens
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
Set.ext
TopologicalSpace.Opens.is_open'
isTopologicalBasis
isTopologicalBasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
setOf
Set
IsOpen
IsCompact
of_isClosedEmbedding 📖mathematicalTopology.IsClosedEmbeddingPrespectralSpaceof_isInducing
Topology.IsClosedEmbedding.isInducing
IsProperMap.isSpectralMap
Topology.IsClosedEmbedding.isProperMap
of_isInducing 📖mathematicalTopology.IsInducing
IsSpectralMap
PrespectralSpaceof_isTopologicalBasis
TopologicalSpace.IsTopologicalBasis.isInducing
isTopologicalBasis
IsSpectralMap.isCompact_preimage_of_isOpen
of_isOpenCover 📖TopologicalSpace.IsOpenCover
PrespectralSpace
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
of_isTopologicalBasis
TopologicalSpace.IsOpenCover.isTopologicalBasis
isTopologicalBasis
IsCompact.image
continuous_subtype_val
of_isTopologicalBasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
IsCompact
PrespectralSpaceTopologicalSpace.IsTopologicalBasis.of_isOpen_of_subset
TopologicalSpace.IsTopologicalBasis.isOpen
of_isTopologicalBasis' 📖mathematicalTopologicalSpace.IsTopologicalBasis
Set.range
Set
IsCompact
PrespectralSpaceof_isTopologicalBasis
sigma 📖mathematicalPrespectralSpaceinstTopologicalSpaceSigmaof_isTopologicalBasis
TopologicalSpace.IsTopologicalBasis.sigma
isTopologicalBasis
IsCompact.image
continuous_sigmaMk

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
prespectralSpace 📖mathematicalTopology.IsOpenEmbeddingPrespectralSpaceTopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
TopologicalSpace.IsTopologicalBasis.isOpen_iff
PrespectralSpace.isTopologicalBasis
isOpen_iff_image_isOpen
IsOpen.preimage
continuous
Topology.IsInducing.isCompact_preimage'
Topology.IsEmbedding.toIsInducing
toIsEmbedding
Set.SurjOn.subset_range
Function.Injective.mem_set_image
Topology.IsEmbedding.injective

(root)

Definitions

NameCategoryTheorems
PrespectralSpace 📖CompData
10 mathmath: AlgebraicGeometry.instPrespectralSpaceCarrierCarrierCommRingCat, PrespectralSpace.of_isTopologicalBasis, PrespectralSpace.of_isTopologicalBasis', SpectralSpace.toPrespectralSpace, PrimeSpectrum.instPrespectralSpace, prespectralSpace_iff, PrespectralSpace.of_isClosedEmbedding, Topology.IsOpenEmbedding.prespectralSpace, instPrespectralSpaceOfNoetherianSpace, PrespectralSpace.of_isInducing

Theorems

NameKindAssumesProvesValidatesDepends On
instLocallyCompactSpaceOfPrespectralSpace 📖mathematicalLocallyCompactSpaceTopologicalSpace.IsTopologicalBasis.mem_nhds_iff
PrespectralSpace.isTopologicalBasis
IsOpen.mem_nhds
instPrespectralSpaceOfNoetherianSpace 📖mathematicalPrespectralSpacePrespectralSpace.of_isTopologicalBasis
TopologicalSpace.isTopologicalBasis_opens
TopologicalSpace.NoetherianSpace.isCompact
instTotallySeparatedSpaceOfT2SpaceOfPrespectralSpace 📖mathematicalTotallySeparatedSpacetotallySeparatedSpace_iff_exists_isClopen
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
PrespectralSpace.isTopologicalBasis
IsClosed.isOpen_compl
isClosed_singleton
T2Space.t1Space
IsCompact.isClosed
prespectralSpace_iff 📖mathematicalPrespectralSpace
TopologicalSpace.IsTopologicalBasis
setOf
Set
IsOpen
IsCompact

---

← Back to Index