Documentation Verification Report

TietzeExtension

πŸ“ Source: Mathlib/Topology/TietzeExtension.lean

Statistics

MetricCount
DefinitionsTietzeExtension
1
Theoremsexists_extension_forall_exists_le_ge_of_isClosedEmbedding, exists_extension_forall_mem_Icc_of_isClosedEmbedding, exists_extension_forall_mem_of_isClosedEmbedding, exists_extension_norm_eq_of_isClosedEmbedding, exists_extension_norm_eq_of_isClosedEmbedding', exists_forall_mem_restrict_eq_of_closed, exists_norm_eq_restrict_eq_of_closed, tietze_extension_step, exists_extension, exists_extension', exists_extension_forall_mem, exists_extension_forall_mem_of_isClosedEmbedding, exists_forall_mem_restrict_eq, exists_restrict_eq, exists_restrict_eq_forall_mem_of_closed, instTietzeExtension, instTietzeExtension, instTietzeExtension, instTietzeExtension, exists_restrict_eq', of_homeo, of_retract, instTietzeExtension
23
Total24

BoundedContinuousFunction

Theorems

NameKindAssumesProvesValidatesDepends On
exists_extension_forall_exists_le_ge_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbeddingReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
DFunLike.coe
BoundedContinuousFunction
Real.pseudoMetricSpace
instFunLike
β€”isGLB_ciInf
Bornology.IsBounded.bddBelow
Real.instIsOrderBornology
isBounded_range
isLUB_ciSup
Bornology.IsBounded.bddAbove
LE.le.trans
LE.le.eq_or_lt
Set.Icc_self
Nat.instAtLeastTwoHAddOfNat
left_lt_add_div_two
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
add_div_two_lt_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
exists_extension_forall_mem_Icc_of_isClosedEmbedding
em
Set.disjoint_union_left
Set.disjoint_left
Disjoint.preimage
Set.disjoint_singleton_right
LT.lt.not_ge
exists_bounded_mem_Icc_of_closed_of_le
IsClosed.union
Topology.IsClosedEmbedding.isClosed_range
IsClosed.preimage
continuous
isClosed_Ici
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isClosed_singleton
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
instBoundedAddOfLipschitzAdd
Real.hasLipschitzAdd
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Set.mem_range_self
add_zero
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
LT.lt.trans_le
le_add_of_nonneg_right
IsGLB.exists_between
le_total
add_le_add
add_sub_cancel
isClosed_Iic
instClosedIicTopology
instBoundedSub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
sub_zero
sub_lt_self_iff
LE.le.trans_lt
sub_le_self_iff
IsLUB.exists_between
lt_or_ge
sub_sub_cancel
sub_le_sub
sub_lt_sub_right
sub_le_sub_left
exists_extension_forall_mem_Icc_of_isClosedEmbedding πŸ“–β€”Real
Set
Set.instMembership
Set.Icc
Real.instPreorder
DFunLike.coe
BoundedContinuousFunction
Real.pseudoMetricSpace
instFunLike
Real.instLE
Topology.IsClosedEmbedding
β€”β€”instBoundedSub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Nat.instAtLeastTwoHAddOfNat
exists_extension_norm_eq_of_isClosedEmbedding
instBoundedAddOfLipschitzAdd
Real.hasLipschitzAdd
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
norm_le
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_le_two
Real.instZeroLEOneClass
Real.Icc_eq_closedBall
dist_self_add_left
LE.le.trans
norm_coe_le_norm
Eq.trans_le
add_sub_cancel
exists_extension_forall_mem_of_isClosedEmbedding πŸ“–β€”Real
Set
Set.instMembership
DFunLike.coe
BoundedContinuousFunction
Real.pseudoMetricSpace
instFunLike
Set.Nonempty
Topology.IsClosedEmbedding
β€”β€”isEmpty_or_nonempty
exists_extension_forall_exists_le_ge_of_isClosedEmbedding
Set.OrdConnected.out
exists_extension_norm_eq_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbeddingNorm.norm
BoundedContinuousFunction
Real
Real.pseudoMetricSpace
instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
DFunLike.coe
instFunLike
β€”Topology.IsClosedEmbedding.continuous
exists_extension_norm_eq_of_isClosedEmbedding'
exists_extension_norm_eq_of_isClosedEmbedding' πŸ“–mathematicalTopology.IsClosedEmbedding
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Norm.norm
BoundedContinuousFunction
Real
Real.pseudoMetricSpace
instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
compContinuous
β€”Nat.instAtLeastTwoHAddOfNat
instBoundedAddOfLipschitzAdd
Real.hasLipschitzAdd
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instBoundedSub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Function.iterate_succ_apply'
dist_zero
pow_zero
one_mul
add_compContinuous
dist_sub_right
NormedAddGroup.to_isIsometricVAdd_right
add_sub_cancel_left
pow_succ'
mul_assoc
LE.le.trans
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_eq_norm'
Mathlib.Meta.NormNum.isRat_le_true
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
one_div
div_eq_inv_mul
Nat.cast_one
Semigroup.to_isAssociative
CommMagma.to_isCommutative
cauchySeq_of_le_geometric
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
Filter.Tendsto.comp
Continuous.tendsto
continuous_compContinuous
CauchySeq.tendsto_limUnder
instCompleteSpace
Real.instCompleteSpace
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_iff_dist_tendsto_zero
squeeze_zero
dist_nonneg
MulZeroClass.zero_mul
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
tendsto_const_nhds
le_antisymm
dist_zero_left
LE.le.trans_eq
Filter.NeBot.nonempty
dist_le_of_le_geometric_of_tendstoβ‚€
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Ring.mul_pf_left
norm_compContinuous_le
tietze_extension_step
exists_forall_mem_restrict_eq_of_closed πŸ“–mathematicalReal
Set
Set.instMembership
DFunLike.coe
BoundedContinuousFunction
Set.Elem
instTopologicalSpaceSubtype
Real.pseudoMetricSpace
instFunLike
Set.Nonempty
restrictβ€”exists_extension_forall_mem_of_isClosedEmbedding
IsClosed.isClosedEmbedding_subtypeVal
DFunLike.coe_injective
exists_norm_eq_restrict_eq_of_closed πŸ“–mathematicalβ€”Norm.norm
BoundedContinuousFunction
Real
Real.pseudoMetricSpace
instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”exists_extension_norm_eq_of_isClosedEmbedding'
IsClosed.isClosedEmbedding_subtypeVal
tietze_extension_step πŸ“–mathematicalTopology.IsClosedEmbedding
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Real
Real.instLE
Norm.norm
BoundedContinuousFunction
Real.pseudoMetricSpace
instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Dist.dist
instDist
compContinuous
Real.instMul
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
eq_or_ne
norm_zero
zero_div
dist_zero_right
MulZeroClass.mul_zero
norm_pos_iff
div_lt_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Left.neg_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Topology.IsClosedEmbedding.isClosedMap
IsClosed.preimage
continuous
isClosed_Iic
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
isClosed_Ici
instClosedIciTopology
Set.disjoint_image_of_injective
Topology.IsEmbedding.injective
Topology.IsClosedEmbedding.toIsEmbedding
Disjoint.preimage
Set.Iic_disjoint_Ici
not_le
exists_bounded_mem_Icc_of_closed_of_le
LT.lt.le
norm_le
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
neg_div
dist_le
mul_nonneg
IsOrderedRing.toPosMulMono
norm_coe_le_norm
le_total
Set.mem_image_of_mem
abs_of_nonneg
sub_nonneg
covariant_swap_add_of_covariant_add
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.neg_subst
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
dist_le_norm_add_norm
add_le_add
abs_le
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
CancelDenoms.add_subst
abs_sub_comm
Mathlib.Tactic.Ring.add_pf_add_gt

ContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_extension πŸ“–mathematicalTopology.IsClosedEmbeddingcomp
Topology.IsClosedEmbedding.continuous
β€”Topology.IsClosedEmbedding.isEmbedding
Homeomorph.instContinuousMapClass
Topology.IsClosedEmbedding.continuous
exists_restrict_eq
Topology.IsClosedEmbedding.isClosed_range
ext
Subtype.coe_eta
Homeomorph.symm_apply_apply
exists_extension' πŸ“–mathematicalTopology.IsClosedEmbeddingDFunLike.coe
ContinuousMap
instFunLike
β€”Topology.IsClosedEmbedding.continuous
exists_extension
exists_extension_forall_mem πŸ“–mathematicalTopology.IsClosedEmbedding
Set
Set.instMembership
DFunLike.coe
ContinuousMap
instFunLike
comp
Topology.IsClosedEmbedding.continuous
β€”Topology.IsClosedEmbedding.continuous
Continuous.codRestrict
ContinuousMapClass.map_continuous
instContinuousMapClass
exists_extension
continuous_subtype_val
ext
exists_extension_forall_mem_of_isClosedEmbedding πŸ“–β€”Real
Set
Set.instMembership
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instFunLike
Set.Nonempty
Topology.IsClosedEmbedding
β€”β€”Real.instIsStrictOrderedRing
Continuous.comp'
continuous_subtype_val
ContinuousMapClass.map_continuous
HomeomorphClass.instContinuousMapClass
OrderIso.instHomeomorphClass
instOrderTopologyReal
orderTopology_of_ordConnected
Set.ordConnected_Ioo
instContinuousMapClass
Metric.isBounded_range_iff
Bornology.IsBounded.subset
Metric.isBounded_Ioo
ConditionallyCompleteLinearOrder.toCompactIccSpace
Set.range_subset_iff
Set.image_subset_iff
CanLift.prf
Subtype.canLift
Set.Icc_subset_Ioo
OrderIso.image_Icc
Set.OrdConnected.out
Set.mem_image_of_mem
BoundedContinuousFunction.exists_extension_forall_mem_of_isClosedEmbedding
Set.Nonempty.image
Continuous.comp
OrderIso.continuous
BoundedContinuousFunction.continuous
Equiv.symm_apply_eq
exists_forall_mem_restrict_eq πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
instFunLike
restrictβ€”Continuous.codRestrict
ContinuousMapClass.map_continuous
instContinuousMapClass
exists_restrict_eq
continuous_subtype_val
ext
exists_restrict_eq πŸ“–mathematicalβ€”restrictβ€”TietzeExtension.exists_restrict_eq'
exists_restrict_eq_forall_mem_of_closed πŸ“–mathematicalReal
Set
Set.instMembership
DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instFunLike
Set.Nonempty
restrictβ€”exists_extension_forall_mem_of_isClosedEmbedding
IsClosed.isClosedEmbedding_subtypeVal
coe_injective

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
NNReal
instTopologicalSpace
β€”TietzeExtension.of_retract
Real.instTietzeExtension
continuous_induced_dom
continuous_real_toNNReal
ContinuousMap.ext
eq
Real.toNNReal_coe

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalTietzeExtensiontopologicalSpaceβ€”ContinuousMap.exists_restrict_eq
ContinuousMap.ext

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
instTopologicalSpaceProd
β€”ContinuousMap.exists_restrict_eq
ContinuousMap.ext

Real

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”ContinuousMap.exists_restrict_eq_forall_mem_of_closed
Set.ordConnected_univ
Set.mem_univ
Set.univ_nonempty

TietzeExtension

Theorems

NameKindAssumesProvesValidatesDepends On
exists_restrict_eq' πŸ“–mathematicalβ€”ContinuousMap.restrictβ€”β€”
of_homeo πŸ“–mathematicalβ€”TietzeExtensionβ€”of_retract
Homeomorph.instContinuousMapClass
Homeomorph.symm_comp_toContinuousMap
of_retract πŸ“–mathematicalContinuousMap.comp
ContinuousMap.id
TietzeExtensionβ€”ContinuousMap.exists_restrict_eq
ContinuousMap.ext
ContinuousMap.id_comp
ContinuousMap.comp_assoc

Unique

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtensionβ€”ContinuousMap.ext

(root)

Definitions

NameCategoryTheorems
TietzeExtension πŸ“–CompData
15 mathmath: Set.instTietzeExtensionUnitBall, NNReal.instTietzeExtension, Prod.instTietzeExtension, unitInterval.instTietzeExtension, TietzeExtension.of_retract, Set.instTietzeExtensionUnitClosedBall, Complex.instTietzeExtension, Unique.instTietzeExtension, Metric.instTietzeExtensionClosedBall, TietzeExtension.of_homeo, Metric.instTietzeExtensionBall, RCLike.instTietzeExtension, RCLike.instTietzeExtensionTVS, TietzeExtension.of_tvs, Real.instTietzeExtension

---

← Back to Index