Ultrafilter 📖 | CompData | 65 mathmath: Ultrafilter.finite_biUnion_mem_iff, Hindman.exists_idempotent_ultrafilter_le_FP, Ultrafilter.mem_pure, Filter.mem_iff_ultrafilter, Filter.notMem_hyperfilter_of_finite, ultrafilter_compact, Ultrafilter.coe_pure, Ultrafilter.diff_mem_iff, Compactum.instT2SpaceA, denseRange_pure, Hindman.exists_idempotent_ultrafilter_le_FS, isOpen_iff_ultrafilter, Set.Finite.compl_mem_hyperfilter, induced_topology_pure, Ultrafilter.union_mem_iff, Compactum.cl_eq_closure, Compactum.instCompactSpaceA, ultrafilter_extend_extends, Filter.iSup_ultrafilter_le_eq, Ultrafilter.eventually_mul, isDenseEmbedding_pure, Ultrafilter.map_pure, Ultrafilter.mem_or_compl_mem, Compactum.le_nhds_of_str_eq, Ultrafilter.continuous_add_left, Ultrafilter.mem_map, Compactum.lim_eq_str, ultrafilterBasis_is_basis, Profinite.projective_ultrafilter, instTotallyDisconnectedSpaceUltrafilter, isProperMap_iff_isClosedMap_ultrafilter, ultrafilter_isOpen_basic, Ultrafilter.pure_injective, Set.Finite.notMem_hyperfilter, Ultrafilter.eq_pure_of_finite, Compactum.continuous_of_hom, Ultrafilter.compl_notMem_iff, mem_closure_iff_ultrafilter, isDenseInducing_pure, Ultrafilter.tendsto_pure_self, Ultrafilter.t2Space, continuous_ultrafilter_extend, Ultrafilter.lawfulMonad, Compactum.str_hom_commute, CompHaus.projective_ultrafilter, Filter.compl_mem_hyperfilter_of_finite, Ultrafilter.compl_mem_iff_notMem, Ultrafilter.coe_injective, Ultrafilter.mem_coe, OnePoint.ultrafilter_le_nhds_infty, ultrafilter_isClosed_basic, ultrafilter_converges_iff, Ultrafilter.empty_notMem, Ultrafilter.le_cofinite_or_eq_pure, Ultrafilter.finite_sUnion_mem_iff, ultrafilter_comap_pure_nhds, Ultrafilter.instNonempty, Ultrafilter.ext_iff, Ultrafilter.continuous_mul_left, Filter.mem_hyperfilter_of_finite_compl, Compactum.isClosed_iff, Ultrafilter.eventually_add, Compactum.isClosed_cl, ultrafilter_extend_pure, Compactum.join_distrib
|