Documentation Verification Report

Ascoli

πŸ“ Source: Mathlib/Topology/UniformSpace/Ascoli.lean

Statistics

MetricCount
Definitions0
TheoremscompactSpace_of_closed_inducing', compactSpace_of_isClosedEmbedding, isCompact_closure_of_isClosedEmbedding, isCompact_of_equicontinuous, comap_uniformFun_eq, inducing_uniformFun_iff_pi, isUniformInducing_uniformFun_iff_pi, tendsto_uniformFun_iff_pi, comap_uniformOnFun_eq, inducing_uniformOnFun_iff_pi', isClosed_range_pi_of_uniformOnFun, isClosed_range_pi_of_uniformOnFun', isClosed_range_uniformOnFun_iff_pi, isInducing_uniformOnFun_iff_pi, isUniformInducing_uniformOnFun_iff_pi, isUniformInducing_uniformOnFun_iff_pi', tendsto_uniformOnFun_iff_pi, tendsto_uniformOnFun_iff_pi'
18
Total18

ArzelaAscoli

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_of_closed_inducing' πŸ“–mathematicalIsCompact
Topology.IsInducing
UniformOnFun
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
EquicontinuousOn
UniformSpace.toTopologicalSpace
Set
Set.instMembership
CompactSpaceβ€”EquicontinuousOn.inducing_uniformOnFun_iff_pi'
isCompact_univ_iff
Topology.IsInducing.isCompact_iff
Set.image_univ
IsCompact.of_isClosed_subset
isCompact_univ_pi
EquicontinuousOn.isClosed_range_pi_of_uniformOnFun'
Set.range_subset_iff
forall_sUnion
Function.sometimes_spec
compactSpace_of_isClosedEmbedding πŸ“–mathematicalIsCompact
Topology.IsClosedEmbedding
UniformOnFun
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
EquicontinuousOn
UniformSpace.toTopologicalSpace
Set
Set.instMembership
CompactSpaceβ€”compactSpace_of_closed_inducing'
Topology.IsClosedEmbedding.isInducing
Topology.IsClosedEmbedding.isClosed_range
isCompact_closure_of_isClosedEmbedding πŸ“–mathematicalIsCompact
Topology.IsClosedEmbedding
UniformOnFun
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
EquicontinuousOn
Set
Set.instMembership
UniformSpace.toTopologicalSpace
closureβ€”isCompact_iff_compactSpace
Continuous.comp
UniformContinuous.continuous
UniformOnFun.uniformContinuous_eval_of_mem
Topology.IsClosedEmbedding.continuous
EquicontinuousOn.closure'
continuous_pi
closure_minimal
IsClosed.preimage
IsCompact.isClosed
compactSpace_of_isClosedEmbedding
Topology.IsClosedEmbedding.comp
IsClosed.isClosedEmbedding_subtypeVal
isClosed_closure
isCompact_of_equicontinuous πŸ“–mathematicalIsCompact
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
Set.image
ContinuousMap
ContinuousMap.toFun
Equicontinuous
Set.Elem
DFunLike.coe
ContinuousMap.instFunLike
Set
Set.instMembership
ContinuousMap.compactOpenβ€”DFunLike.coe_injective
Topology.IsInducing.of_comp_iff
Topology.IsInducing.subtypeVal
EquicontinuousOn.isInducing_uniformOnFun_iff_pi
Set.eq_univ_iff_forall
Set.mem_sUnion_of_mem
Set.mem_singleton
isCompact_singleton
Equicontinuous.equicontinuousOn
Topology.IsInducing.comp
IsUniformInducing.isInducing
IsUniformEmbedding.toIsUniformInducing
ContinuousMap.isUniformEmbedding_toUniformOnFunIsCompact
isCompact_iff_compactSpace
Homeomorph.compactSpace

Equicontinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comap_uniformFun_eq πŸ“–mathematicalEquicontinuousUniformSpace.comap
UniformFun.uniformSpace
Pi.uniformSpace
β€”le_antisymm
UniformSpace.comap_mono
UniformFun.uniformContinuous_toFun
Pi.uniformity
Filter.comap_iInf
Filter.comap_comap
Filter.HasBasis.ge_iff
Filter.HasBasis.comap
UniformFun.hasBasis_uniformity
comp_comp_symm_mem_uniformity_sets
CompactSpace.elim_nhds_subcover
Set.mem_iUnionβ‚‚
Eq.subset
Set.instReflSubset
Set.mem_univ
SetRel.prodMk_mem_comp
SetRel.symm
Set.mem_iInterβ‚‚
Filter.mem_of_superset
Finset.iInter_mem_sets
Filter.mem_iInf_of_mem
Filter.preimage_mem_comap
inducing_uniformFun_iff_pi πŸ“–mathematicalEquicontinuousTopology.IsInducing
UniformFun
UniformFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
β€”Topology.isInducing_iff
comap_uniformFun_eq
isUniformInducing_uniformFun_iff_pi πŸ“–mathematicalEquicontinuousIsUniformInducing
UniformFun
UniformFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
Pi.uniformSpace
β€”isUniformInducing_iff_uniformSpace
comap_uniformFun_eq
tendsto_uniformFun_iff_pi πŸ“–mathematicalEquicontinuousFilter.Tendsto
UniformFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
nhds
UniformFun.topologicalSpace
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
β€”Filter.eq_or_neBot
Filter.Tendsto.comp
Continuous.tendsto
UniformContinuous.continuous
UniformFun.uniformContinuous_toFun
closure'
equicontinuous_iff_range
continuous_id
inducing_uniformFun_iff_pi
mem_closure_of_tendsto
Filter.range_mem_map
Filter.map_comap_of_mem
Filter.mem_of_superset
subset_closure
Subtype.range_coe
Filter.tendsto_id'
nhds_induced
Filter.map_le_iff_le_comap
Filter.tendsto_map'_iff
Topology.IsInducing.tendsto_nhds_iff

EquicontinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
comap_uniformOnFun_eq πŸ“–mathematicalIsCompact
EquicontinuousOn
UniformSpace.comap
UniformOnFun.uniformSpace
Set.restrict
Set.sUnion
Pi.uniformSpace
Set.Elem
β€”UniformSpace.comap_iInf
iInf_congr_Prop
UniformSpace.comap_comap
Pi.uniformSpace_comap_restrict_sUnion
isCompact_iff_compactSpace
Equicontinuous.comap_uniformFun_eq
equicontinuous_restrict_iff
iInf_congr
inducing_uniformOnFun_iff_pi' πŸ“–mathematicalIsCompact
EquicontinuousOn
Topology.IsInducing
UniformOnFun
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
Pi.topologicalSpace
Set.Elem
Set.sUnion
UniformSpace.toTopologicalSpace
Set.restrict
β€”Topology.isInducing_iff
comap_uniformOnFun_eq
isClosed_range_pi_of_uniformOnFun πŸ“–mathematicalIsCompact
Set.sUnion
Set.univ
EquicontinuousOn
IsClosed
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
Set.range
β€”isClosed_range_uniformOnFun_iff_pi
isClosed_range_pi_of_uniformOnFun' πŸ“–mathematicalIsCompact
EquicontinuousOn
IsClosed
Pi.topologicalSpace
Set.Elem
Set.sUnion
UniformSpace.toTopologicalSpace
Set.range
Set.restrict
β€”isEmpty_or_nonempty
Finite.instDiscreteTopology
instT1SpaceForall
T2Space.t1Space
DiscreteTopology.toT2Space
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
Finite.of_subsingleton
Set.range_comp
Function.Surjective.forall
Function.Injective.surjective_comp_right
Subtype.coe_injective
tendsto_uniformOnFun_iff_pi'
Set.mem_image_of_mem
IsClosed.mem_of_tendsto
Ultrafilter.neBot
Filter.Eventually.of_forall
Set.mem_range_self
isClosed_range_uniformOnFun_iff_pi πŸ“–mathematicalIsCompact
Set.sUnion
Set.univ
EquicontinuousOn
IsClosed
UniformOnFun
UniformOnFun.topologicalSpace
Set.range
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
β€”Set.range_comp
Function.Surjective.forall
Equiv.surjective
tendsto_uniformOnFun_iff_pi
Function.Injective.mem_set_image
Equiv.injective
isInducing_uniformOnFun_iff_pi πŸ“–mathematicalSet.sUnion
Set.univ
IsCompact
EquicontinuousOn
Topology.IsInducing
UniformOnFun
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
β€”Set.eq_univ_iff_forall
inducing_uniformOnFun_iff_pi'
Topology.IsInducing.comp
Homeomorph.isInducing
isUniformInducing_uniformOnFun_iff_pi πŸ“–mathematicalSet.sUnion
Set.univ
IsCompact
EquicontinuousOn
IsUniformInducing
UniformOnFun
UniformOnFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
Pi.uniformSpace
β€”Set.eq_univ_iff_forall
isUniformInducing_uniformOnFun_iff_pi'
IsUniformInducing.comp
UniformEquiv.isUniformInducing
isUniformInducing_uniformOnFun_iff_pi' πŸ“–mathematicalIsCompact
EquicontinuousOn
IsUniformInducing
UniformOnFun
UniformOnFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
Pi.uniformSpace
Set.Elem
Set.sUnion
Set.restrict
β€”isUniformInducing_iff_uniformSpace
comap_uniformOnFun_eq
tendsto_uniformOnFun_iff_pi πŸ“–mathematicalIsCompact
Set.sUnion
Set.univ
EquicontinuousOn
Filter.Tendsto
UniformOnFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
nhds
UniformOnFun.topologicalSpace
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
β€”Set.eq_univ_iff_forall
tendsto_uniformOnFun_iff_pi'
Topology.IsInducing.tendsto_nhds_iff
Homeomorph.isInducing
tendsto_uniformOnFun_iff_pi' πŸ“–mathematicalIsCompact
EquicontinuousOn
Filter.Tendsto
UniformOnFun
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
nhds
UniformOnFun.topologicalSpace
Set.restrict
Set.sUnion
Pi.topologicalSpace
Set.Elem
UniformSpace.toTopologicalSpace
β€”Filter.tendsto_comap_iff
nhds_induced
UniformOnFun.topologicalSpace_eq
Pi.induced_restrict_sUnion
nhds_iInf
iInf_congr_Prop
isCompact_iff_compactSpace
Equicontinuous.tendsto_uniformFun_iff_pi
equicontinuous_restrict_iff

---

← Back to Index