Cauchy
π Source: Mathlib/Topology/UniformSpace/Cauchy.lean
Statistics
CauSeq.Completion
Definitions
Cauchy
Theorems
CauchySeq
Theorems
CompleteSpace
Theorems
DiscreteUniformity
Definitions
| Name | Category | Theorems |
|---|---|---|
cauchyConst π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq_pure_cauchyConst π | mathematical | Cauchy | FilterFilter.instPurecauchyConst | β | eq_pure_of_cauchy |
eq_pure_of_cauchy π | mathematical | Cauchy | FilterFilter.instPure | β | eq_principal_setRelIdSetRel.exists_eq_singleton_of_prod_subset_idFilter.NeBot.nonempty_of_memFilter.NeBot.le_pure_iffFilter.le_pure_iff |
instCompleteSpace π | mathematical | β | CompleteSpace | β | eq_pure_of_cauchypure_le_nhds |
Filter
Theorems
Filter.HasBasis
Theorems
Filter.Tendsto
Theorems
Filter.TotallyBounded
Theorems
Function.Bijective
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
cauchySeq_comp_iff π | mathematical | Function.Bijective | CauchySeqNat.instPreorder | β | CanLift.prfEquiv.instCanLiftForallCoeBijectiveEquiv.apply_symm_applyCauchySeq.comp_injectiveNat.instNoMaxOrderEquiv.injectiveinjective |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isComplete π | mathematical | β | IsComplete | β | CompleteSpace.completeisClosed_iff_clusterPtFilter.NeBot.monole_inf |
IsCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isComplete π | mathematical | IsCompactUniformSpace.toTopologicalSpace | IsComplete | β | isCompact_iff_totallyBounded_isComplete |
totallyBounded π | mathematical | IsCompactUniformSpace.toTopologicalSpace | TotallyBounded | β | isCompact_iff_totallyBounded_isComplete |
IsComplete
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
union π | mathematical | IsComplete | SetSet.instUnion | β | β |
SequentiallyComplete
Definitions
| Name | Category | Theorems |
|---|---|---|
seq π | CompOp | |
setSeq π | CompOp | |
setSeqAux π | CompOp |
Theorems
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
totallyBounded π | mathematical | β | TotallyBounded | β | Set.mem_biUnionrefl_mem_uniformity |
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
totallyBounded π | mathematical | Set.Subsingleton | TotallyBounded | β | Set.Finite.totallyBoundedfinite |
TotallyBounded
Theorems
Ultrafilter
Theorems
UniformContinuous
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comp_cauchySeq π | β | UniformContinuousCauchySeq | β | β | Cauchy.map |
UniformSpace
Theorems
(root)
Definitions
Theorems
---