Documentation Verification Report

Cauchy

πŸ“ Source: Mathlib/Topology/UniformSpace/Cauchy.lean

Statistics

MetricCount
DefinitionsCauchy, Cauchy, CauchySeq, CompleteSpace, cauchyConst, IsComplete, seq, setSeq, setSeqAux, interUnionBalls
10
Theoremscomap, comap', le_nhds_lim, map, mono, mono', mono_uniformSpace, prod, ultrafilter_of, comp_injective, comp_tendsto, eventually_eventually, mem_entourage, nonempty, prodMap, prodMk, subseq_mem, subseq_subseq_mem, tendsto_limUnder, tendsto_uniformity, totallyBounded_range, addOpposite, complete, fst_of_prod, mulOpposite, prod, snd_of_prod, eq_pure_cauchyConst, eq_pure_of_cauchy, instCompleteSpace, cauchySeq_iff, cauchySeq_iff', cauchy_iff, filter_totallyBounded_iff, totallyBounded_iff, cauchySeq, cauchy_map, subseq_mem_entourage, exists_clusterPt, exists_subset_of_mem, isCompact_setOf_clusterPt, map, mono, sup, totallyBounded_setOf_clusterPt, totallyBounded_biSup, totallyBounded_bot, totallyBounded_iSup, totallyBounded_iff_filter, totallyBounded_iff_ultrafilter, totallyBounded_principal_iff, totallyBounded_sup, cauchySeq_comp_iff, isComplete, isComplete, totallyBounded, union, le_nhds_of_seq_tendsto_nhds, seq_is_cauchySeq, seq_mem, seq_pair_mem, setSeq_mem, setSeq_mono, setSeq_prod_subset, setSeq_sub_aux, totallyBounded, totallyBounded, closure, exists_subset, image, insert, isCompact_of_isClosed, isCompact_of_isComplete, isSeparable, subset, union, cauchy_of_totallyBounded, cauchy_of_totallyBounded', comp_cauchySeq, complete_of_cauchySeq_tendsto, complete_of_convergent_controlled_sequences, firstCountableTopology, secondCountable_of_almost_dense_set, secondCountable_of_separable, subset_countable_closure_of_almost_dense_set, cauchySeq_const, cauchySeq_iff, cauchySeq_iff', cauchySeq_iff_tendsto, cauchySeq_of_controlled, cauchySeq_shift, cauchySeq_tendsto_of_complete, cauchySeq_tendsto_of_isComplete, cauchy_comap_uniformSpace, cauchy_iInf_uniformSpace, cauchy_iInf_uniformSpace', cauchy_iff, cauchy_iff', cauchy_iff_exists_le_nhds, cauchy_iff_le, cauchy_inf_uniformSpace, cauchy_map_iff, cauchy_map_iff', cauchy_map_iff_exists_tendsto, cauchy_nhds, cauchy_prod_iff, cauchy_pure, completeSpace_iff_isComplete_univ, completeSpace_iff_ultrafilter, completeSpace_of_isComplete_univ, completeSpace_prod_of_nonempty, complete_of_compact, complete_univ, isCompact_closure_interUnionBalls, isCompact_iff_totallyBounded_isComplete, isCompact_of_totallyBounded_isClosed, isComplete_iUnion_separated, isComplete_iff_clusterPt, isComplete_iff_ultrafilter, isComplete_iff_ultrafilter', le_nhds_iff_adhp_of_cauchy, le_nhds_of_cauchy_adhp, le_nhds_of_cauchy_adhp_aux, tendsto_nhds_of_cauchySeq_of_subseq, totallyBounded_biUnion, totallyBounded_closure, totallyBounded_empty, totallyBounded_iUnion, totallyBounded_iff_filter, totallyBounded_iff_subset, totallyBounded_iff_ultrafilter, totallyBounded_insert, totallyBounded_interUnionBalls, totallyBounded_of_forall_isSymm, totallyBounded_sSup, totallyBounded_sUnion, totallyBounded_singleton, totallyBounded_union
138
Total148

CauSeq.Completion

Definitions

NameCategoryTheorems
Cauchy πŸ“–CompOp
53 mathmath: ofRat_div, ofRat_inv, ofRat_mul, ofRat_ratCast, Real.ofCauchy_zero, Real.ofCauchy_mul, Real.cauchy_sub, Real.ofCauchy_nnratCast, ofRat_rat, Real.ofCauchy_sub, ofRat_one, Real.cauchy_inv, Real.cauchy_nnratCast, mk_smul, ofRat_add, Real.ofCauchy_natCast, inv_mk, mk_add, Real.cauchy_natCast, Real.ofCauchy_ratCast, Real.ofCauchy_intCast, Real.ofCauchy_div, ofRat_sub, mk_mul, ofRat_nnratCast, Real.cauchy_neg, inv_zero, mul_inv_cancel, Real.cauchy_intCast, inv_mul_cancel, ofRat_zero, Real.cauchy_add, Real.ofCauchy_add, Real.ofCauchy_inv, Real.cauchy_zero, Real.ofCauchy_neg, Real.ofCauchy_one, Real.cauchy_one, ofRat_injective, Real.cauchy_ratCast, mk_neg, Real.cauchy_mul, ofRatRingHom_apply, Real.ringEquivCauchy_apply, mk_eq_zero, mk_pow, ofRat_intCast, mk_sub, Real.ringEquivCauchy_symm_apply_cauchy, ofRat_natCast, PadicSeq.eq_zero_iff_equiv_zero, Cauchy.instNonTrivial, ofRat_neg

Cauchy

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–β€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
uniformity
β€”β€”Filter.prod_comap_comap_eq
Filter.comap_mono
comap' πŸ“–β€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.comap
uniformity
β€”β€”comap
le_nhds_lim πŸ“–mathematicalCauchyFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
lim
Filter.NeBot.nonempty
Filter.NeBot
SProd.sprod
Filter.instSProd
uniformity
β€”le_nhds_lim
CompleteSpace.complete
map πŸ“–mathematicalCauchy
UniformContinuous
Filter.mapβ€”Filter.NeBot.map
Filter.prod_map_map_eq
Filter.map_mono
mono πŸ“–β€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”le_trans
Filter.prod_mono
mono' πŸ“–β€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”β€”mono
mono_uniformSpace πŸ“–β€”UniformSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderUniformSpace
Cauchy
β€”β€”LE.le.trans
prod πŸ“–mathematicalCauchyinstUniformSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”Filter.map_fst_prod
Filter.map_snd_prod
ultrafilter_of πŸ“–mathematicalCauchyUltrafilter.toFilter
Ultrafilter.of
Filter.NeBot
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
SProd.sprod
Filter.instSProd
uniformity
β€”Ultrafilter.of_le
Ultrafilter.neBot
LE.le.trans
Filter.prod_mono

CauchySeq

Theorems

NameKindAssumesProvesValidatesDepends On
comp_injective πŸ“–mathematicalCauchySeq
Nat.instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”comp_tendsto
Filter.Tendsto.mono_left
Function.Injective.tendsto_cofinite
Filter.atTop_le_cofinite
instNoTopOrderOfNoMaxOrder
Nat.cofinite_eq_atTop
comp_tendsto πŸ“–β€”CauchySeq
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”β€”Filter.map_neBot
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
le_trans
Filter.prod_le_prod
Filter.Tendsto.comp
le_rfl
eventually_eventually πŸ“–mathematicalCauchySeq
SetRel
Filter
Filter.instMembership
uniformity
Filter.Eventually
Set.instMembership
Filter.atTop
β€”Filter.eventually_atTop_curry
tendsto_uniformity
mem_entourage πŸ“–mathematicalCauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetRel
Filter
Filter.instMembership
uniformity
Set.instMembershipβ€”tendsto_uniformity
Filter.HasBasis.tendsto_left_iff
Filter.HasBasis.prod_self
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
nonempty
Filter.prod_atTop_atTop_eq
nonempty πŸ“–β€”CauchySeqβ€”β€”Filter.nonempty_of_neBot
Filter.map_neBot_iff
prodMap πŸ“–mathematicalCauchySeqinstUniformSpaceProd
Prod.instPreorder
β€”Filter.prod_map_map_eq'
Filter.prod_atTop_atTop_eq
Cauchy.prod
prodMk πŸ“–mathematicalCauchySeqinstUniformSpaceProdβ€”Cauchy.mono
Filter.map_neBot
Filter.NeBot.of_map
Cauchy.prod
Filter.Tendsto.prodMk
Filter.tendsto_map
subseq_mem πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
CauchySeq
Nat.instPreorder
StrictMono
Set.instMembership
β€”cauchySeq_iff
le_trans
Filter.extraction_forall_of_eventually'
LT.lt.le
subseq_subseq_mem πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
CauchySeq
Nat.instPreorder
Filter.Tendsto
Filter.atTop
StrictMono
Set.instMembership
β€”Filter.Tendsto.subseq_mem
Filter.Tendsto.comp
cauchySeq_iff_tendsto
Filter.Tendsto.prod_atTop
Filter.tendsto_atTop_diagonal
tendsto_limUnder πŸ“–mathematicalCauchySeqFilter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
limUnder
Filter.NeBot.nonempty
Filter.map
Filter.NeBot
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
SProd.sprod
Filter.instSProd
uniformity
β€”Cauchy.le_nhds_lim
tendsto_uniformity πŸ“–mathematicalCauchySeqFilter.Tendsto
Filter.atTop
Prod.instPreorder
uniformity
β€”Filter.prod_map_map_eq'
Filter.prod_atTop_atTop_eq
totallyBounded_range πŸ“–mathematicalCauchySeq
Nat.instPreorder
TotallyBounded
Set.range
β€”cauchySeq_iff
Set.Finite.image
Set.finite_le_nat
Set.range_subset_iff
Set.biUnion_image
Set.mem_iUnionβ‚‚
le_total
refl_mem_uniformity
le_refl
le_rfl

CompleteSpace

Theorems

NameKindAssumesProvesValidatesDepends On
addOpposite πŸ“–mathematicalβ€”CompleteSpace
AddOpposite
instUniformSpaceAddOpposite
β€”Function.Surjective.exists
AddOpposite.op_surjective
complete
Cauchy.map
AddOpposite.uniformContinuous_unop
LE.le.trans_eq
Filter.map_le_iff_le_comap
AddOpposite.comap_unop_nhds
complete πŸ“–mathematicalCauchyFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
β€”β€”
fst_of_prod πŸ“–mathematicalβ€”CompleteSpaceβ€”complete
Cauchy.prod
cauchy_pure
Filter.map_fst_prod
Filter.pure_neBot
nhds_prod_eq
nhds_neBot
Filter.map_mono
mulOpposite πŸ“–mathematicalβ€”CompleteSpace
MulOpposite
instUniformSpaceMulOpposite
β€”Function.Surjective.exists
MulOpposite.op_surjective
complete
Cauchy.map
MulOpposite.uniformContinuous_unop
LE.le.trans_eq
Filter.map_le_iff_le_comap
MulOpposite.comap_unop_nhds
prod πŸ“–mathematicalβ€”CompleteSpace
instUniformSpaceProd
β€”complete
Cauchy.map
uniformContinuous_fst
uniformContinuous_snd
nhds_prod_eq
Filter.le_prod
snd_of_prod πŸ“–mathematicalβ€”CompleteSpaceβ€”complete
Cauchy.prod
cauchy_pure
Filter.map_snd_prod
Filter.pure_neBot
nhds_prod_eq
nhds_neBot
Filter.map_mono

DiscreteUniformity

Definitions

NameCategoryTheorems
cauchyConst πŸ“–CompOp
1 mathmath: eq_pure_cauchyConst

Theorems

NameKindAssumesProvesValidatesDepends On
eq_pure_cauchyConst πŸ“–mathematicalCauchyFilter
Filter.instPure
cauchyConst
β€”eq_pure_of_cauchy
eq_pure_of_cauchy πŸ“–mathematicalCauchyFilter
Filter.instPure
β€”eq_principal_setRelId
SetRel.exists_eq_singleton_of_prod_subset_id
Filter.NeBot.nonempty_of_mem
Filter.NeBot.le_pure_iff
Filter.le_pure_iff
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpaceβ€”eq_pure_of_cauchy
pure_le_nhds

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
totallyBounded_biSup πŸ“–mathematicalβ€”TotallyBounded
iSup
Filter
instSupSet
Set
Set.instMembership
β€”Set.Finite.to_subtype
iSup_subtype'
totallyBounded_iSup
totallyBounded_bot πŸ“–mathematicalβ€”TotallyBounded
Bot.bot
Filter
instBot
β€”principal_empty
totallyBounded_principal_iff
totallyBounded_empty
totallyBounded_iSup πŸ“–mathematicalβ€”TotallyBounded
iSup
Filter
instSupSet
β€”TotallyBounded.mono
le_iSup
Set.finite_iUnion
SetRel.preimage_iUnion
iSup_mono
totallyBounded_iff_filter πŸ“–mathematicalβ€”TotallyBounded
Filter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cauchy
β€”Ultrafilter.of_le
Ultrafilter.cauchy_of_totallyBounded'
TotallyBounded.mono
LE.le.trans
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
inf_le_inf
le_refl
Set.compl_subset_compl_of_subset
SetRel.preimage_subset_preimage
iInf_neBot_iff_of_directed'
Antitone.directed_ge
Finset.isDirected_le
notMem_iff_inf_principal_compl
Finset.finite_toSet
iInf_le_of_le
Finset.coe_empty
SetRel.preimage_empty_right
Set.compl_empty
principal_univ
inf_of_le_left
mem_prod_same_iff
NeBot.nonempty_of_mem
Finset.coe_singleton
iInf_le
inf_le_right
inter_mem
totallyBounded_iff_ultrafilter πŸ“–mathematicalβ€”TotallyBounded
Cauchy
Ultrafilter.toFilter
β€”Ultrafilter.cauchy_of_totallyBounded'
TotallyBounded.mono
totallyBounded_iff_filter
Ultrafilter.of_le
LE.le.trans
totallyBounded_principal_iff πŸ“–mathematicalβ€”TotallyBounded
principal
TotallyBounded
β€”SetRel.preimage_eq_biUnion
totallyBounded_sup πŸ“–mathematicalβ€”TotallyBounded
Filter
instSup
β€”sup_eq_iSup
totallyBounded_iSup
Bool.instFinite

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff πŸ“–mathematicalFilter.HasBasis
uniformity
CauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetRel
Set.instMembership
β€”cauchySeq_iff_tendsto
Filter.prod_atTop_atTop_eq
tendsto_iff
prod_self
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
forall_swap
cauchySeq_iff' πŸ“–mathematicalFilter.HasBasis
uniformity
CauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetRel
Set.instMembership
β€”cauchySeq_iff
le_rfl
comp_symm_of_uniformity
mem_of_mem
mem_iff
cauchy_iff πŸ“–mathematicalFilter.HasBasis
uniformity
Cauchy
Filter.NeBot
Set
Filter
Filter.instMembership
SetRel
Set.instMembership
β€”le_basis_iff
prod_self
Filter.basis_sets
filter_totallyBounded_iff πŸ“–mathematicalFilter.HasBasis
uniformity
Filter.TotallyBounded
Set.Finite
Set
Filter
Filter.instMembership
SetRel.preimage
β€”forall_iff
Filter.mem_of_superset
SetRel.preimage_subset_preimage_left
totallyBounded_iff πŸ“–mathematicalFilter.HasBasis
uniformity
TotallyBounded
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
setOf
SetRel
β€”forall_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_mono

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq πŸ“–mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
UniformSpace.toTopologicalSpace
CauchySeqβ€”cauchy_map
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
cauchy_map πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
Cauchy
Filter.map
β€”Cauchy.mono
Filter.map_neBot
cauchy_nhds
subseq_mem_entourage πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
StrictMono
Set.instMembership
β€”Filter.mem_atTop_sets
SemilatticeSup.instIsDirectedOrder
UniformSpace.ball_mem_nhds
symm_le_uniformity
CauchySeq.subseq_mem
cauchySeq
comp
Filter.tendsto_add_atTop_nat
StrictMono.add_const
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_add_self
Nat.instCanonicallyOrderedAdd

Filter.TotallyBounded

Theorems

NameKindAssumesProvesValidatesDepends On
exists_clusterPt πŸ“–mathematicalFilter.TotallyBoundedClusterPt
UniformSpace.toTopologicalSpace
β€”Ultrafilter.of_le
Ultrafilter.cauchy_of_totallyBounded'
mono
CompleteSpace.complete
ClusterPt.mono
le_nhds_iff_adhp_of_cauchy
exists_subset_of_mem πŸ“–mathematicalFilter.TotallyBounded
Set
Filter
Filter.instMembership
SetRel
uniformity
Set.instHasSubset
Set.Finite
SetRel.preimage
β€”comp_symm_of_uniformity
Set.range_subset_iff
Set.finite_range
Finite.of_fintype
Set.Finite.inter_of_left
Filter.mp_mem
Filter.univ_mem'
Subtype.coe_prop
isCompact_setOf_clusterPt πŸ“–mathematicalFilter.TotallyBoundedIsCompact
UniformSpace.toTopologicalSpace
setOf
ClusterPt
β€”TotallyBounded.isCompact_of_isClosed
totallyBounded_setOf_clusterPt
isClosed_setOf_clusterPt
map πŸ“–mathematicalFilter.TotallyBounded
UniformContinuous
Filter.mapβ€”Set.Finite.image
mono πŸ“–β€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.TotallyBounded
β€”β€”β€”
sup πŸ“–mathematicalFilter.TotallyBoundedFilter
Filter.instSup
β€”Filter.totallyBounded_sup
totallyBounded_setOf_clusterPt πŸ“–mathematicalFilter.TotallyBoundedTotallyBounded
setOf
ClusterPt
UniformSpace.toTopologicalSpace
β€”Filter.HasBasis.totallyBounded_iff
uniformity_hasBasis_closed
SetRel.preimage_eq_biUnion
IsClosed.closure_eq
IsClosed.relPreimage_of_finite
ClusterPt.mem_closure_of_mem

Function.Bijective

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_comp_iff πŸ“–mathematicalFunction.BijectiveCauchySeq
Nat.instPreorder
β€”CanLift.prf
Equiv.instCanLiftForallCoeBijective
Equiv.apply_symm_apply
CauchySeq.comp_injective
Nat.instNoMaxOrder
Equiv.injective
injective

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete πŸ“–mathematicalβ€”IsCompleteβ€”CompleteSpace.complete
isClosed_iff_clusterPt
Filter.NeBot.mono
le_inf

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
IsCompleteβ€”isCompact_iff_totallyBounded_isComplete
totallyBounded πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
TotallyBoundedβ€”isCompact_iff_totallyBounded_isComplete

IsComplete

Theorems

NameKindAssumesProvesValidatesDepends On
union πŸ“–mathematicalIsCompleteSet
Set.instUnion
β€”β€”

SequentiallyComplete

Definitions

NameCategoryTheorems
seq πŸ“–CompOp
3 mathmath: seq_is_cauchySeq, seq_mem, seq_pair_mem
setSeq πŸ“–CompOp
5 mathmath: setSeq_mono, seq_mem, setSeq_mem, setSeq_sub_aux, setSeq_prod_subset
setSeqAux πŸ“–CompOp
1 mathmath: setSeq_sub_aux

Theorems

NameKindAssumesProvesValidatesDepends On
le_nhds_of_seq_tendsto_nhds πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set.instHasSubset
Filter.Tendsto
seq
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
β€”le_nhds_of_cauchy_adhp_aux
Filter.tendsto_atTop'
SemilatticeSup.instIsDirectedOrder
mem_nhds_left
setSeq_mem
le_max_left
Set.Subset.trans
setSeq_prod_subset
le_max_right
seq_mem
seq_is_cauchySeq πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set.instHasSubset
CauchySeq
Nat.instPreorder
seq
β€”cauchySeq_of_controlled
seq_pair_mem
seq_mem πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instMembership
setSeq
seq
β€”Filter.NeBot.nonempty_of_mem
setSeq_mem
seq_pair_mem πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set.instMembership
seq
β€”setSeq_prod_subset
seq_mem
setSeq_mem πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set
setSeq
β€”Filter.biInter_mem
Set.finite_le_nat
setSeq_mono πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instHasSubset
setSeq
β€”Set.biInter_subset_biInter_left
Set.Iic_subset_Iic
setSeq_prod_subset πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instHasSubset
SProd.sprod
Set.instSProd
setSeq
β€”setSeq_sub_aux
setSeq_mono
setSeq_sub_aux πŸ“–mathematicalCauchy
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instHasSubset
setSeq
SProd.sprod
Set.instSProd
setSeqAux
β€”Set.biInter_subset_of_mem
Set.self_mem_Iic

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
totallyBounded πŸ“–mathematicalβ€”TotallyBoundedβ€”Set.mem_biUnion
refl_mem_uniformity

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
totallyBounded πŸ“–mathematicalSet.SubsingletonTotallyBoundedβ€”Set.Finite.totallyBounded
finite

TotallyBounded

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalTotallyBoundedclosure
UniformSpace.toTopologicalSpace
β€”closure_eq_cluster_pts
Filter.TotallyBounded.totallyBounded_setOf_clusterPt
Filter.totallyBounded_principal_iff
exists_subset πŸ“–mathematicalTotallyBounded
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
setOf
β€”Filter.TotallyBounded.exists_subset_of_mem
Filter.totallyBounded_principal_iff
Filter.mem_principal_self
image πŸ“–mathematicalTotallyBounded
UniformContinuous
Set.imageβ€”Filter.TotallyBounded.map
insert πŸ“–mathematicalTotallyBoundedSet
Set.instInsert
β€”totallyBounded_insert
isCompact_of_isClosed πŸ“–mathematicalTotallyBoundedIsCompact
UniformSpace.toTopologicalSpace
β€”isCompact_of_isComplete
IsClosed.isComplete
isCompact_of_isComplete πŸ“–mathematicalTotallyBounded
IsComplete
IsCompact
UniformSpace.toTopologicalSpace
β€”isCompact_iff_totallyBounded_isComplete
isSeparable πŸ“–mathematicalTotallyBoundedTopologicalSpace.IsSeparable
UniformSpace.toTopologicalSpace
β€”UniformSpace.subset_countable_closure_of_almost_dense_set
Filter.mem_of_superset
symmetrize_mem_uniformity
SetRel.symmetrize_subset_inv
Set.Finite.countable
subset πŸ“–β€”Set
Set.instHasSubset
TotallyBounded
β€”β€”Set.Subset.trans
union πŸ“–mathematicalTotallyBoundedSet
Set.instUnion
β€”totallyBounded_union

Ultrafilter

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_of_totallyBounded πŸ“–mathematicalTotallyBounded
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
toFilter
Filter.principal
Cauchyβ€”cauchy_of_totallyBounded'
Filter.TotallyBounded.mono
Filter.totallyBounded_principal_iff
cauchy_of_totallyBounded' πŸ“–mathematicalFilter.TotallyBounded
toFilter
Cauchyβ€”neBot'
comp_symm_of_uniformity
eventually_exists_mem_iff
Filter.mem_of_superset
Filter.prod_mem_prod
Set.Subset.trans

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_cauchySeq πŸ“–β€”UniformContinuous
CauchySeq
β€”β€”Cauchy.map

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
complete_of_cauchySeq_tendsto πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
toTopologicalSpace
CompleteSpaceβ€”Filter.exists_antitone_seq
complete_of_convergent_controlled_sequences
Set.Subset.refl
cauchySeq_of_controlled
complete_of_convergent_controlled_sequences πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
toTopologicalSpace
CompleteSpaceβ€”Filter.exists_antitone_seq
Filter.inter_mem
Set.Subset.refl
SequentiallyComplete.le_nhds_of_seq_tendsto_nhds
Set.Subset.trans
Set.inter_subset_right
Set.inter_subset_left
SequentiallyComplete.seq_pair_mem
firstCountableTopology πŸ“–mathematicalβ€”FirstCountableTopology
toTopologicalSpace
β€”nhds_eq_comap_uniformity
Filter.comap.isCountablyGenerated
secondCountable_of_almost_dense_set πŸ“–mathematicalSet.Countable
Set.iUnion
Set
Set.instMembership
ball
Set.univ
SecondCountableTopology
toTopologicalSpace
β€”subset_countable_closure_of_almost_dense_set
Set.mem_univ
secondCountable_of_separable
secondCountable_of_separable πŸ“–mathematicalβ€”SecondCountableTopology
toTopologicalSpace
β€”TopologicalSpace.exists_countable_dense
Filter.HasBasis.exists_antitone_subbasis
uniformity_hasBasis_open_symmetric
Set.Countable.biUnion
Set.countable_range
instCountableNat
TopologicalSpace.IsTopologicalBasis.eq_generateFrom
TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_ball
mem_nhds_iff
IsOpen.mem_nhds
comp_symm_of_uniformity
Filter.HasBasis.mem_iff
Filter.HasAntitoneBasis.toHasBasis
Dense.inter_open_nonempty
mem_ball_self
SetRel.symm
ball_subset_of_comp_subset
subset_countable_closure_of_almost_dense_set πŸ“–mathematicalSet.Countable
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
ball
closure
toTopologicalSpace
β€”has_seq_basis
Filter.HasAntitoneBasis.mem
Set.Countable.to_subtype
Set.iUnionβ‚‚_subset
Set.range_subset_iff
Set.countable_iUnion
instCountableNat
Set.countable_range
Prop.countable
mem_closure_iff_ball
comp_mem_uniformity_sets
Filter.HasAntitoneBasis.mem_iff
Set.mem_iUnionβ‚‚
ball_mono
HasSubset.Subset.trans
Set.instIsTransSubset
SetRel.comp_subset_comp
mem_ball_comp
mem_ball_symmetry
Set.mem_iUnionβ‚‚_of_mem
Set.mem_range_self

(root)

Definitions

NameCategoryTheorems
Cauchy πŸ“–MathDef
44 mathmath: cauchy_pi_iff', IsUniformAddGroup.cauchy_map_iff_tendsto, UniformCauchySeqOn.cauchy_map, Filter.totallyBounded_iff_filter, cauchy_inf_uniformSpace, cauchy_iff, cauchy_map_iff_exists_tendsto, cauchy_iInf_uniformSpace', cauchy_map_iff, cauchy_iff_exists_le_nhds, CauchyFilter.cauchyFilter_eq, cauchy_comap_uniformSpace, BoxIntegral.Integrable.cauchy_map_integralSum_toFilteriUnion, CauchyFilter.inseparable_iff, CauchyFilter.instNeBotValFilterCauchy, cauchy_prod_iff, IsUniformAddGroup.cauchy_iff_tendsto_swapped, Valued.cauchy_iff, IsUniformGroup.cauchy_map_iff_tendsto, Metric.cauchy_iff, IsUniformAddGroup.cauchy_iff_tendsto, IsUniformGroup.cauchy_iff_tendsto_swapped, EMetric.cauchy_iff, Filter.totallyBounded_iff_ultrafilter, BoxIntegral.integrable_iff_cauchy, Filter.HasBasis.cauchy_iff, Ultrafilter.cauchy_of_totallyBounded, cauchy_pure, cauchy_iff_le, cauchy_map_iff', cauchy_pi_iff, IsUniformAddGroup.cauchy_map_iff_tendsto_swapped, Ultrafilter.cauchy_of_totallyBounded', totallyBounded_iff_filter, CauchyFilter.inseparable_lim_iff, totallyBounded_iff_ultrafilter, IsUniformGroup.cauchy_iff_tendsto, cauchy_nhds, IsUniformGroup.cauchy_map_iff_tendsto_swapped, cauchy_iInf_uniformSpace, AddGroupFilterBasis.cauchy_iff, IsUniformInducing.cauchy_map_iff, Filter.Tendsto.cauchy_map, cauchy_iff'
CauchySeq πŸ“–MathDef
61 mathmath: UniformCauchySeqOn.cauchySeq, Metric.cauchySeq_iff, NormedAddCommGroup.cauchy_series_of_le_geometric'', NormedCommGroup.cauchySeq_iff, MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm, NormedAddCommGroup.cauchy_series_of_le_geometric', cauchySeq_iff', cauchySeq_finset_iff_nat_tsum_vanishing, cauchySeq_iff_tendsto_dist_atTop_0, cauchySeq_of_edist_le_of_tsum_ne_top, Filter.HasBasis.cauchySeq_iff, cauchySeq_of_le_geometric, cauchySeq_finset_of_summable_norm, cauchySeq_finset_iff_nat_tprod_vanishing, SequentiallyComplete.seq_is_cauchySeq, cauchySeq_finset_of_norm_bounded_eventually, cauchySeq_of_edist_le_of_summable, EMetric.cauchySeq_iff, cauchySeq_finset_iff_vanishing_norm, cauchySeq_of_edist_le_geometric_two, NormedAddCommGroup.cauchySeq_iff, Filter.HasBasis.cauchySeq_iff', SeminormedAddCommGroup.cauchySeq_of_le_geometric, Monotone.cauchySeq_series_mul_of_tendsto_zero_of_bounded, Filter.Tendsto.cauchySeq, multipliable_iff_cauchySeq_finset, cauchySeq_of_dist_le_of_summable, cauchySeq_of_le_tendsto_0, cauchySeq_finset_iff_prod_vanishing, Antitone.cauchySeq_series_mul_of_tendsto_zero_of_bounded, cauchySeq_finset_iff_tprod_vanishing, cauchySeq_const, NonarchimedeanGroup.cauchySeq_of_tendsto_div_nhds_one, CauSeq.cauchySeq, cauchySeq_iff_le_tendsto_0, EMetric.cauchySeq_iff_le_tendsto_0, Function.Bijective.cauchySeq_comp_iff, cauchySeq_of_edist_le_geometric, isCauSeq_iff_cauchySeq, NonarchimedeanAddGroup.cauchySeq_of_tendsto_sub_nhds_zero, cauchySeq_finset_of_norm_bounded, summable_iff_cauchySeq_finset, cauchySeq_finset_iff_sum_vanishing, summable_iff_cauchySeq_finset_and_tsum_mem, EMetric.cauchySeq_iff_NNReal, cauchySeq_of_summable_dist, cauchySeq_shift, Antitone.cauchySeq_alternating_series_of_tendsto_zero, cauchySeq_iff_tendsto, cauchySeq_of_le_geometric_two, EMetric.cauchySeq_iff', Monotone.cauchySeq_alternating_series_of_tendsto_zero, cauchy_series_of_le_geometric, Metric.cauchySeq_iff', cauchySeq_of_controlled, NonarchimedeanAddGroup.cauchySeq_sum_of_tendsto_cofinite_zero, cauchySeq_iff, cauchySeq_finset_iff_tsum_vanishing, cauchySeq_finset_of_geometric_bound, cauchySeq_of_le_tendsto_0', NonarchimedeanGroup.cauchySeq_prod_of_tendsto_cofinite_one
CompleteSpace πŸ“–CompData
139 mathmath: TrivSqZeroExt.instCompleteSpace, complete_of_proper, QuotientAddGroup.completeSpace_right', IsComplete.completeSpace_coe, DiscreteUniformity.instCompleteSpace, ContinuousLinearMap.completeSpace_eqLocus, Valued.integer.compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField, WithLp.instCompleteSpace, CompleteSpace.mulOpposite, TopologicalSpace.IsCompletelyPseudoMetrizableSpace.complete, completeSpace_iff_ultrafilter, QuotientGroup.completeSpace_left, NormedAddCommGroup.summable_imp_tendsto_iff_completeSpace, completeSpace_extension, QuotientAddGroup.completeSpace_left, completeSpace_congr, TopologicalSpace.Opens.CompleteCopy.instCompleteSpace, ContinuousLinearMap.completeSpace, Matrix.instCompleteSpace, CompleteSpace.addOpposite, IsAdic.isPrecomplete_iff, QuotientGroup.completeSpace_right, SeparatingDual.completeSpace_of_completeSpace_continuousMultilinearMap, Algebra.elemental.instCompleteSpaceSubtypeMemSubalgebra, Submodule.Quotient.completeSpace, IsAdic.isAdicComplete_iff, QuotientAddGroup.completeSpace_right, ContinuousMapZero.instCompleteSpaceOfT1SpaceOfContinuousMap, QuotientGroup.completeSpace_right', UniformFun.instCompleteSpace, IsometryEquiv.completeSpace, MeasureTheory.Lp.instCompleteSpace, CStarAlgebra.toCompleteSpace, ContinuousMultilinearMap.completeSpace, completeSpace_iff_isComplete_univ, spectralNorm.completeSpace, SeparationQuotient.completeSpace_iff, IsTopologicalGroup.completeSpace_rightUniformSpace_iff_leftUniformSpace, Quaternion.instCompleteSpaceReal, UniformOnFun.instCompleteSpace, WithCStarModule.instCompleteSpace, Padic.instCompleteSpace, Metric.complete_of_convergent_controlled_sequences, IsometryEquiv.completeSpace_iff, CStarMatrix.instCompleteSpace, completeSpace_of_isComplete_univ, TopologicalSpace.complete_completelyPseudoMetrizableMetric, TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace, PadicInt.completeSpace, WithLp.instProdCompleteSpace, ContinuousLinearMap.instCompleteSpace, IsRightUniformGroup.completeSpace_of_weaklyLocallyCompactSpace, IsUniformInducing.completeSpace, RCLike.toCompleteSpace, LinearIsometryEquiv.completeSpace_map, NonUnitalCommCStarAlgebra.toCompleteSpace, PiNat.completeSpace, CompleteSpace.prod, ContinuousMultilinearMap.instCompleteSpace, UniformSpace.Completion.completeSpace, ContinuousMap.instCompleteSpaceOfCompactlyCoherentSpace, UniformEquiv.completeSpace_iff, MeasureTheory.instCompleteSpaceSubtypeAEEqFunMemAddSubgroupLpSubmoduleLpMeasOfFactLeMeasurableSpace, ZeroAtInftyContinuousMap.instCompleteSpace, NonUnitalAlgebra.elemental.instCompleteSpaceSubtypeMemNonUnitalSubalgebra, StarAlgebra.elemental.instCompleteSpaceSubtypeMemStarSubalgebra, Complex.instCompleteSpace, TopologicalSpace.Closeds.instCompleteSpace, Valued.integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, GromovHausdorff.instCompleteSpaceGHSpace, SeparatingDual.completeSpace_continuousLinearMap_iff, completeSpace_prod_of_nonempty, UniformConvergenceCLM.completeSpace, ContinuousAlternatingMap.completeSpace, Metric.complete_of_cauchySeq_tendsto, CauchyFilter.instCompleteSpace, UniformSpace.complete_of_cauchySeq_tendsto, QuotientGroup.completeSpace_left', CpltSepUniformSpace.completeSpace, Tactic.ComputeAsymptotics.Seq.instCompleteSpaceStream', SeparatingDual.completeSpace_of_completeSpace_continuousLinearMap, Tactic.ComputeAsymptotics.Seq.instCompleteSpaceSeq, TopologicalSpace.complete_completelyMetrizableMetric, IsTopologicalAddGroup.completeSpace_rightUniformSpace_iff_leftUniformSpace, NormedField.completeSpace_iff_isComplete_closedBall, Real.instCompleteSpace, MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm, completeSpace_of_cauSeq_isComplete, TopologicalSpace.NonemptyCompacts.instCompleteSpace, LinearIsometry.completeSpace_map, LaurentSeries.instLaurentSeriesComplete, UniformSpace.complete_of_convergent_controlled_sequences, instCompleteSpaceSubtypeMemSubmoduleOfIsClosedCoe, ContinuousAlternatingMap.instCompleteSpace, EMetric.complete_of_convergent_controlled_sequences, CpltSepUniformSpace.isCompleteSpace, NonUnitalCStarAlgebra.toCompleteSpace, ODE.FunSpace.instCompleteSpace, SeparationQuotient.instCompleteSpace, ContinuousLinearMap.completeSpace_ker, Path.instCompleteSpace, TopologicalSpace.IsCompletelyMetrizableSpace.complete, CompleteSpace.fst_of_prod, NormedAddCommGroup.completeSpace_of_summable_imp_tendsto, SeparatingDual.completeSpace_continuousMultilinearMap_iff, Submodule.instOrthogonalCompleteSpace, MeasureTheory.integral_def, AntilipschitzWith.completeSpace_range_clm, CompleteSpace.sum, EMetric.complete_of_cauchySeq_tendsto, IsNonarchimedeanLocalField.instCompleteSpace, ContinuousAlgHom.instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass, IsClosed.completeSpace_coe, Unitization.instCompleteSpace, ULift.instCompleteSpace, BoundedContinuousFunction.instCompleteSpace, MeasureTheory.instCompleteSpaceSubtypeAEEqFunMemAddSubgroupLpLpMeasSubgroupOfFactLeMeasurableSpace, MvPowerSeries.WithPiTopology.instCompleteSpace, FiniteDimensional.complete, completeSpace_coe_iff_isComplete, completeSpace_iff_isComplete_range, IsRightUniformAddGroup.completeSpace_of_weaklyLocallyCompactSpace, IsNonarchimedeanLocalField.instCompleteSpaceSubtypeMemSubringIntegerValueGroupWithZeroValuation, complete_of_compact, NonUnitalStarAlgebra.elemental.instCompleteSpaceSubtypeMemNonUnitalStarSubalgebra, instCompleteSpaceSubtypeMemClosedSubmodule, AbstractCompletion.complete, DoubleCentralizer.instCompleteSpace, CommCStarAlgebra.toCompleteSpace, IsUniformInducing.completeSpace_congr, TopologicalSpace.UpgradedIsCompletelyPseudoMetrizableSpace.toCompleteSpace, Submodule.topologicalClosure.completeSpace, StarSubalgebra.instCompleteSpaceSubtypeMemTopologicalClosure, QuotientAddGroup.completeSpace_left', completeSpace_ulift_iff, PowerSeries.WithPiTopology.instCompleteSpace, CompleteSpace.snd_of_prod, NNReal.instCompleteSpace, SemiNormedGrp.completion_completeSpace
IsComplete πŸ“–MathDef
27 mathmath: complete_univ, LinearIsometry.isComplete_image_iff', ContinuousLinearMap.isComplete_ker, IsSeqCompact.isComplete, isComplete_iff_ultrafilter, LinearIsometry.isComplete_map_iff, completeSpace_iff_isComplete_univ, LinearIsometry.isComplete_image_iff, IsUniformEmbedding.isComplete_iff, Submodule.complete_of_finiteDimensional, IsUniformInducing.isComplete_range, isCompact_iff_totallyBounded_isComplete, Subtype.isComplete_iff, IsUniformInducing.isComplete_iff, NormedField.completeSpace_iff_isComplete_closedBall, isComplete_iff_clusterPt, MeasureTheory.isComplete_aestronglyMeasurable, IsClosed.isComplete, IsCompact.isComplete, AntilipschitzWith.isComplete_range, ContinuousMap.isComplete_setOf_eqOn, isComplete_image_iff, LinearIsometry.isComplete_map_iff', completeSpace_coe_iff_isComplete, completeSpace_iff_isComplete_range, QuasiCompleteSpace.quasiComplete, isComplete_iff_ultrafilter'
interUnionBalls πŸ“–CompOp
2 mathmath: isCompact_closure_interUnionBalls, totallyBounded_interUnionBalls

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_const πŸ“–mathematicalβ€”CauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”Filter.Tendsto.cauchySeq
tendsto_const_nhds
cauchySeq_iff πŸ“–mathematicalβ€”CauchySeq
Nat.instPreorder
Set
Set.instMembership
β€”SemilatticeSup.instIsDirectedOrder
cauchySeq_iff' πŸ“–mathematicalβ€”CauchySeq
Nat.instPreorder
Filter.Eventually
Set
Set.instMembership
Set.preimage
Filter.atTop
Prod.instPreorder
β€”cauchySeq_iff_tendsto
cauchySeq_iff_tendsto πŸ“–mathematicalβ€”CauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Filter.Tendsto
Filter.atTop
Prod.instPreorder
uniformity
β€”cauchy_map_iff'
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.prod_atTop_atTop_eq
Prod.map_def
cauchySeq_of_controlled πŸ“–mathematicalSetRel
Set.instHasSubset
Set.instMembership
CauchySeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”cauchySeq_iff_tendsto
Filter.mem_map
Filter.mem_atTop_sets
SemilatticeSup.instIsDirectedOrder
cauchySeq_shift πŸ“–mathematicalβ€”CauchySeq
Nat.instPreorder
β€”cauchySeq_iff
CauchySeq.comp_tendsto
Filter.tendsto_add_atTop_nat
cauchySeq_tendsto_of_complete πŸ“–mathematicalCauchySeqFilter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
β€”CompleteSpace.complete
cauchySeq_tendsto_of_isComplete πŸ“–mathematicalIsComplete
Set
Set.instMembership
CauchySeq
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
β€”Filter.le_principal_iff
Filter.mem_map_iff_exists_image
Filter.univ_mem
Set.image_univ
Set.range_subset_iff
cauchy_comap_uniformSpace πŸ“–mathematicalβ€”Cauchy
UniformSpace.comap
Filter.map
β€”Filter.prod_map_map_eq
cauchy_iInf_uniformSpace πŸ“–mathematicalβ€”Cauchy
iInf
UniformSpace
instInfSetUniformSpace
β€”iInf_uniformity
le_iInf_iff
cauchy_iInf_uniformSpace' πŸ“–mathematicalβ€”Cauchy
iInf
UniformSpace
instInfSetUniformSpace
β€”cauchy_iff_le
iInf_uniformity
cauchy_iff πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Set
Filter
Filter.instMembership
Set.instHasSubset
SProd.sprod
Set.instSProd
β€”cauchy_iff'
cauchy_iff' πŸ“–mathematicalβ€”Cauchy
Filter.NeBot
Set
Filter
Filter.instMembership
Set.instMembership
β€”Filter.HasBasis.cauchy_iff
Filter.basis_sets
cauchy_iff_exists_le_nhds πŸ“–mathematicalβ€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
β€”CompleteSpace.complete
Cauchy.mono
cauchy_nhds
cauchy_iff_le πŸ“–mathematicalβ€”Cauchy
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
SProd.sprod
Filter.instSProd
uniformity
β€”β€”
cauchy_inf_uniformSpace πŸ“–mathematicalβ€”Cauchy
UniformSpace
instMinUniformSpace
β€”inf_uniformity
le_inf_iff
cauchy_map_iff πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.NeBot
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
uniformity
β€”Cauchy.eq_1
Filter.map_neBot_iff
Filter.prod_map_map_eq
Filter.Tendsto.eq_1
cauchy_map_iff' πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.Tendsto
SProd.sprod
Filter
Filter.instSProd
uniformity
β€”cauchy_map_iff
cauchy_map_iff_exists_tendsto πŸ“–mathematicalβ€”Cauchy
Filter.map
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
β€”cauchy_iff_exists_le_nhds
Filter.map_neBot
cauchy_nhds πŸ“–mathematicalβ€”Cauchy
nhds
UniformSpace.toTopologicalSpace
β€”nhds_neBot
Eq.trans_le
nhds_prod_eq
nhds_le_uniformity
cauchy_prod_iff πŸ“–mathematicalβ€”Cauchy
instUniformSpaceProd
Filter.map
β€”β€”
cauchy_pure πŸ“–mathematicalβ€”Cauchy
Filter
Filter.instPure
β€”Cauchy.mono
Filter.pure_neBot
cauchy_nhds
pure_le_nhds
completeSpace_iff_isComplete_univ πŸ“–mathematicalβ€”CompleteSpace
IsComplete
Set.univ
β€”complete_univ
completeSpace_of_isComplete_univ
completeSpace_iff_ultrafilter πŸ“–mathematicalβ€”CompleteSpace
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
UniformSpace.toTopologicalSpace
β€”Filter.principal_univ
completeSpace_of_isComplete_univ πŸ“–mathematicalIsComplete
Set.univ
CompleteSpaceβ€”le_top
Filter.principal_univ
completeSpace_prod_of_nonempty πŸ“–mathematicalβ€”CompleteSpace
instUniformSpaceProd
β€”CompleteSpace.fst_of_prod
CompleteSpace.snd_of_prod
CompleteSpace.prod
complete_of_compact πŸ“–mathematicalβ€”CompleteSpaceβ€”Filter.principal_univ
isCompact_iff_totallyBounded_isComplete
isCompact_univ
complete_univ πŸ“–mathematicalβ€”IsComplete
Set.univ
β€”CompleteSpace.complete
Set.mem_univ
isCompact_closure_interUnionBalls πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
closure
interUnionBalls
β€”isCompact_iff_totallyBounded_isComplete
TotallyBounded.closure
totallyBounded_interUnionBalls
IsClosed.isComplete
isClosed_closure
isCompact_iff_totallyBounded_isComplete πŸ“–mathematicalβ€”IsCompact
UniformSpace.toTopologicalSpace
TotallyBounded
IsComplete
β€”totallyBounded_iff_ultrafilter
isCompact_iff_ultrafilter_le_nhds
Cauchy.mono
Ultrafilter.neBot
cauchy_nhds
le_nhds_of_cauchy_adhp
isCompact_of_totallyBounded_isClosed πŸ“–mathematicalTotallyBoundedIsCompact
UniformSpace.toTopologicalSpace
β€”TotallyBounded.isCompact_of_isClosed
isComplete_iUnion_separated πŸ“–mathematicalIsComplete
SetRel
Filter
Filter.instMembership
uniformity
Set.iUnionβ€”cauchy_iff
Set.inter_subset_right
Filter.inter_mem
Filter.le_principal_iff
Set.Subset.trans
Set.prod_mono
Set.inter_subset_left
Filter.nonempty_of_mem
Set.mem_iUnion
Set.mk_mem_prod
Filter.mem_of_superset
isComplete_iff_clusterPt πŸ“–mathematicalβ€”IsComplete
Set
Set.instMembership
ClusterPt
UniformSpace.toTopologicalSpace
β€”le_nhds_iff_adhp_of_cauchy
isComplete_iff_ultrafilter πŸ“–mathematicalβ€”IsComplete
Set
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
UniformSpace.toTopologicalSpace
β€”isComplete_iff_clusterPt
Cauchy.ultrafilter_of
LE.le.trans
Ultrafilter.of_le
ClusterPt.mono
ClusterPt.of_le_nhds
Ultrafilter.neBot
isComplete_iff_ultrafilter' πŸ“–mathematicalβ€”IsComplete
Set
Set.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Ultrafilter.toFilter
nhds
UniformSpace.toTopologicalSpace
β€”isComplete_iff_ultrafilter
le_nhds_iff_adhp_of_cauchy πŸ“–mathematicalCauchyFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
ClusterPt
β€”ClusterPt.of_le_nhds'
le_nhds_of_cauchy_adhp
le_nhds_of_cauchy_adhp πŸ“–mathematicalCauchyFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
β€”le_nhds_of_cauchy_adhp_aux
cauchy_iff
Filter.forall_mem_nonempty_iff_neBot
Filter.inter_mem_inf
mem_nhds_left
le_nhds_of_cauchy_adhp_aux πŸ“–mathematicalSet
Filter
Filter.instMembership
Set.instHasSubset
SProd.sprod
Set.instSProd
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
UniformSpace.toTopologicalSpace
β€”comp_mem_uniformity_sets
mem_nhds_uniformity_iff_right
Filter.mem_of_superset
SetRel.prodMk_mem_comp
Set.mk_mem_prod
tendsto_nhds_of_cauchySeq_of_subseq πŸ“–β€”CauchySeq
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
β€”β€”le_nhds_of_cauchy_adhp
MapClusterPt.of_comp
Filter.Tendsto.mapClusterPt
totallyBounded_biUnion πŸ“–mathematicalβ€”TotallyBounded
Set.iUnion
Set
Set.instMembership
β€”Set.Finite.to_subtype
Set.biUnion_eq_iUnion
totallyBounded_iUnion
totallyBounded_closure πŸ“–mathematicalβ€”TotallyBounded
closure
UniformSpace.toTopologicalSpace
β€”TotallyBounded.subset
subset_closure
TotallyBounded.closure
totallyBounded_empty πŸ“–mathematicalβ€”TotallyBounded
Set
Set.instEmptyCollection
β€”Set.Finite.totallyBounded
Set.finite_empty
totallyBounded_iUnion πŸ“–mathematicalβ€”TotallyBounded
Set.iUnion
β€”β€”
totallyBounded_iff_filter πŸ“–mathematicalβ€”TotallyBounded
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Cauchy
β€”Filter.totallyBounded_principal_iff
Filter.totallyBounded_iff_filter
totallyBounded_iff_subset πŸ“–mathematicalβ€”TotallyBounded
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
setOf
β€”TotallyBounded.exists_subset
totallyBounded_iff_ultrafilter πŸ“–mathematicalβ€”TotallyBounded
Cauchy
Ultrafilter.toFilter
β€”Filter.totallyBounded_principal_iff
Filter.totallyBounded_iff_ultrafilter
totallyBounded_insert πŸ“–mathematicalβ€”TotallyBounded
Set
Set.instInsert
β€”β€”
totallyBounded_interUnionBalls πŸ“–mathematicalFilter.HasBasis
uniformity
TotallyBounded
interUnionBalls
β€”Filter.HasBasis.totallyBounded_iff
Set.mem_iInter
Finset.finite_toSet
Set.iUnion_congr_Prop
Finset.coe_image
Finset.coe_range
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
totallyBounded_of_forall_isSymm πŸ“–mathematicalSet.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
UniformSpace.ball
TotallyBoundedβ€”Filter.HasBasis.totallyBounded_iff
UniformSpace.hasBasis_symmetric
Set.iUnion_congr_Prop
UniformSpace.ball_eq_of_symmetry
totallyBounded_sSup πŸ“–mathematicalβ€”Filter.TotallyBounded
SupSet.sSup
Filter
Filter.instSupSet
β€”sSup_eq_iSup
Filter.totallyBounded_biSup
totallyBounded_sUnion πŸ“–mathematicalβ€”TotallyBounded
Set.sUnion
β€”Set.sUnion_eq_biUnion
totallyBounded_biUnion
totallyBounded_singleton πŸ“–mathematicalβ€”TotallyBounded
Set
Set.instSingletonSet
β€”Set.Finite.totallyBounded
Set.finite_singleton
totallyBounded_union πŸ“–mathematicalβ€”TotallyBounded
Set
Set.instUnion
β€”Set.union_eq_iUnion
totallyBounded_iUnion
Bool.instFinite

---

← Back to Index