Documentation Verification Report

Compact

πŸ“ Source: Mathlib/Topology/UniformSpace/Compact.lean

Statistics

MetricCount
Definitions0
Theoremsexists_uniform_thickening, exists_uniform_thickening_of_basis, lebesgue_number_lemma, lebesgue_number_lemma_nhds, lebesgue_number_lemma_nhds', lebesgue_number_lemma_nhdsWithin, lebesgue_number_lemma_nhdsWithin', relImage_of_isCompact, relPreimage_of_isCompact, nhdsSet_basis_uniformity, compactSpace_uniformity, lebesgue_number_lemma, lebesgue_number_lemma_nhds, lebesgue_number_lemma_nhds', lebesgue_number_lemma_nhdsWithin, lebesgue_number_lemma_nhdsWithin', lebesgue_number_lemma_sUnion, lebesgue_number_of_compact_open, nhdsSet_diagonal_eq_uniformity, unique_uniformity_of_compact
20
Total20

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
exists_uniform_thickening πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Filter
Filter.instMembership
uniformity
Set.iUnion
Set.instMembership
UniformSpace.ball
β€”IsOpen.mem_nhdsSet
IsClosed.isOpen_compl
le_compl_right
Filter.HasBasis.mem_iff
IsCompact.nhdsSet_basis_uniformity
Filter.basis_sets
comp_symm_mem_uniformity_sets
Set.disjoint_left
Set.mem_iUnionβ‚‚_of_mem
UniformSpace.mem_comp_of_mem_ball
UniformSpace.mem_ball_symmetry
exists_uniform_thickening_of_basis πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.iUnion
Set.instMembership
UniformSpace.ball
β€”exists_uniform_thickening
Filter.HasBasis.mem_iff
mono
Set.iUnionβ‚‚_mono
UniformSpace.ball_mono

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
lebesgue_number_lemma πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
IsOpen
Set
Set.instHasSubset
Set.iUnion
UniformSpace.ballβ€”exists_iff
Set.Subset.trans
UniformSpace.ball_mono
lebesgue_number_lemma
lebesgue_number_lemma_nhds πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
UniformSpace.ball
β€”exists_iff
Set.Subset.trans
UniformSpace.ball_mono
lebesgue_number_lemma_nhds
lebesgue_number_lemma_nhds' πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhds
Set.instHasSubset
UniformSpace.ball
Set.instMembership
β€”exists_iff
Set.Subset.trans
UniformSpace.ball_mono
lebesgue_number_lemma_nhds'
lebesgue_number_lemma_nhdsWithin πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhdsWithin
Set.instHasSubset
Set.instInter
UniformSpace.ball
β€”exists_iff
Set.Subset.trans
Set.inter_subset_inter_left
UniformSpace.ball_mono
lebesgue_number_lemma_nhdsWithin
lebesgue_number_lemma_nhdsWithin' πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhdsWithin
Set.instHasSubset
Set.instInter
UniformSpace.ball
Set.instMembership
β€”exists_iff
Set.Subset.trans
Set.inter_subset_inter_left
UniformSpace.ball_mono
lebesgue_number_lemma_nhdsWithin'

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
relImage_of_isCompact πŸ“–mathematicalIsCompactIsClosed
SetRel.image
β€”relPreimage_of_isCompact
relInv
relPreimage_of_isCompact πŸ“–mathematicalIsCompactIsClosed
SetRel.preimage
β€”isOpen_compl_iff
isOpen_iff_eventually
IsCompact.eventually_forall_of_forall_eventually

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsSet_basis_uniformity πŸ“–mathematicalFilter.HasBasis
uniformity
IsCompact
UniformSpace.toTopologicalSpace
nhdsSet
Set.iUnion
Set
Set.instMembership
UniformSpace.ball
β€”Set.iUnion_const
Filter.HasBasis.lebesgue_number_lemma
isOpen_interior
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
Filter.mem_of_superset
bUnion_mem_nhdsSet
UniformSpace.ball_mem_nhds
Filter.HasBasis.mem_of_mem

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_uniformity πŸ“–mathematicalβ€”uniformity
iSup
Filter
Filter.instSupSet
nhds
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
β€”nhdsSet_diagonal_eq_uniformity
nhdsSet_diagonal
lebesgue_number_lemma πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
IsOpen
Set
Set.instHasSubset
Set.iUnion
Filter
Filter.instMembership
uniformity
UniformSpace.ball
β€”Set.mem_iUnion
Filter.HasBasis.mem_iff
Filter.HasBasis.comap
Filter.HasBasis.lift'
Filter.basis_sets
Monotone.relComp
monotone_id
lift'_comp_uniformity
nhds_eq_comap_uniformity
IsOpen.mem_nhds_iff
IsCompact.elim_nhds_subcover'
UniformSpace.ball_mem_nhds
Filter.biInter_finset_mem
Set.mem_iUnionβ‚‚
Set.mem_iInterβ‚‚
lebesgue_number_lemma_nhds πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhds
uniformity
Set.instHasSubset
UniformSpace.ball
β€”lebesgue_number_lemma
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
lebesgue_number_lemma_nhds' πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhds
uniformity
Set.instHasSubset
UniformSpace.ball
Set.instMembership
β€”lebesgue_number_lemma
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
lebesgue_number_lemma_nhdsWithin πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhdsWithin
uniformity
Set.instHasSubset
Set.instInter
UniformSpace.ball
β€”Set.inter_subset
lebesgue_number_lemma_nhds
Filter.mem_inf_principal'
lebesgue_number_lemma_nhdsWithin' πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set
Filter
Filter.instMembership
nhdsWithin
uniformity
Set.instHasSubset
Set.instInter
UniformSpace.ball
Set.instMembership
β€”Set.inter_subset
lebesgue_number_lemma_nhds'
Filter.mem_inf_principal'
lebesgue_number_lemma_sUnion πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
IsOpen
Set
Set.instHasSubset
Set.sUnion
Filter
Filter.instMembership
uniformity
Set.instMembership
UniformSpace.ball
β€”lebesgue_number_lemma
Set.sUnion_eq_iUnion
lebesgue_number_of_compact_open πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
IsOpen
Set
Set.instHasSubset
Filter
Filter.instMembership
uniformity
instTopologicalSpaceProd
UniformSpace.ball
β€”Filter.HasBasis.mem_iff
IsCompact.nhdsSet_basis_uniformity
uniformity_hasBasis_open
IsOpen.mem_nhdsSet
Set.iUnionβ‚‚_subset_iff
nhdsSet_diagonal_eq_uniformity πŸ“–mathematicalβ€”nhdsSet
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
Set.diagonal
uniformity
β€”LE.le.antisymm
nhdsSet_diagonal_le_uniformity
uniformity_prod_eq_comap_prod
Filter.HasBasis.comap
Filter.HasBasis.prod_self
Filter.basis_sets
Filter.HasBasis.ge_iff
IsCompact.nhdsSet_basis_uniformity
isCompact_diagonal
Filter.mem_of_superset
Set.mem_iUnionβ‚‚
refl_mem_uniformity
unique_uniformity_of_compact πŸ“–β€”UniformSpace.toTopologicalSpaceβ€”β€”UniformSpace.ext
compactSpace_uniformity

---

← Back to Index