Documentation Verification Report

CompactConvergence

πŸ“ Source: Mathlib/Topology/UniformSpace/CompactConvergence.lean

Statistics

MetricCount
DefinitionscompactConvergenceUniformSpace, toUniformOnFunIsCompact, arrowCongr
3
TheoremshasAntitoneBasis_compactConvergenceUniformity, hasBasis_compactConvergenceUniformity, continuous_iff_continuous_uniformFun, continuous_iff_continuous_uniformOnFun, hasBasis_compactConvergenceUniformity, hasBasis_compactConvergenceUniformity_of_compact, instCompleteSpaceOfCompactlyCoherentSpace, instIsCountablyGeneratedProdUniformityOfWeaklyLocallyCompactSpaceOfSigmaCompactSpace, isComplete_setOf_eqOn, isUniformEmbedding_comp, isUniformEmbedding_toUniformOnFunIsCompact, isUniformEmbedding_uniformFunOfFun, isUniformInducing_comp, mem_compactConvergence_entourage_iff, range_toUniformOnFunIsCompact, tendsto_iff_forall_isCompact_tendstoUniformlyOn, tendsto_iff_tendstoLocallyUniformly, tendsto_iff_tendstoUniformly, tendsto_of_tendstoLocallyUniformly, toUniformOnFun_toFun, uniformContinuous_comp, uniformContinuous_comp_left, uniformSpace_eq_iInf_precomp_of_cover, uniformSpace_eq_inf_precomp_of_cover, continuous_restrict_iff_continuous_uniformOnFun, tendsto_restrict_iff_tendstoUniformlyOn, compactConvergenceUniformity, compactConvergenceUniformity_of_compact
28
Total31

CompactExhaustion

Theorems

NameKindAssumesProvesValidatesDepends On
hasAntitoneBasis_compactConvergenceUniformity πŸ“–mathematicalFilter.HasAntitoneBasis
Nat.instPreorder
uniformity
ContinuousMap
UniformSpace.toTopologicalSpace
ContinuousMap.compactConvergenceUniformSpace
setOf
β€”Filter.HasAntitoneBasis.comap
UniformOnFun.hasAntitoneBasis_uniformity
SemilatticeSup.instIsDirectedOrder
isCompact
subset
exists_superset_of_isCompact
hasBasis_compactConvergenceUniformity πŸ“–mathematicalFilter.HasBasis
uniformity
ContinuousMap
UniformSpace.toTopologicalSpace
ContinuousMap.compactConvergenceUniformSpace
setOf
β€”Filter.HasBasis.comap
UniformOnFun.hasBasis_uniformity_of_covering_of_basis
isCompact
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
subset
exists_superset_of_isCompact

ContinuousMap

Definitions

NameCategoryTheorems
compactConvergenceUniformSpace πŸ“–CompOp
24 mathmath: isUniformInducing_equivBoundedOfCompact, ODE.FunSpace.isUniformInducing_toContinuousMap, mem_compactConvergence_entourage_iff, uniformContinuous_comp_left, Path.uniformContinuous_extend_left, hasBasis_compactConvergenceUniformity, uniformContinuous_comp, Path.isUniformEmbedding_coe, instCompleteSpaceOfCompactlyCoherentSpace, CompactExhaustion.hasAntitoneBasis_compactConvergenceUniformity, isUniformEmbedding_comp, isUniformEmbedding_toUniformOnFunIsCompact, isUniformEmbedding_uniformFunOfFun, ContinuousMapZero.isUniformEmbedding_toContinuousMap, Filter.HasBasis.compactConvergenceUniformity_of_compact, hasBasis_compactConvergenceUniformity_of_compact, isUniformInducing_comp, isComplete_setOf_eqOn, instIsCountablyGeneratedProdUniformityOfWeaklyLocallyCompactSpaceOfSigmaCompactSpace, Filter.HasBasis.compactConvergenceUniformity, uniformSpace_eq_iInf_precomp_of_cover, CompactExhaustion.hasBasis_compactConvergenceUniformity, isUniformEmbedding_equivBoundedOfCompact, uniformSpace_eq_inf_precomp_of_cover
toUniformOnFunIsCompact πŸ“–CompOp
3 mathmath: toUniformOnFun_toFun, isUniformEmbedding_toUniformOnFunIsCompact, range_toUniformOnFunIsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff_continuous_uniformFun πŸ“–mathematicalβ€”Continuous
ContinuousMap
UniformSpace.toTopologicalSpace
compactOpen
UniformFun
UniformFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
instFunLike
β€”Topology.IsInducing.continuous_iff
IsUniformInducing.isInducing
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_uniformFunOfFun
continuous_iff_continuous_uniformOnFun πŸ“–mathematicalβ€”Continuous
ContinuousMap
UniformSpace.toTopologicalSpace
compactOpen
UniformOnFun
setOf
Set
IsCompact
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
instFunLike
β€”Topology.IsInducing.continuous_iff
IsUniformInducing.isInducing
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toUniformOnFunIsCompact
hasBasis_compactConvergenceUniformity πŸ“–mathematicalβ€”Filter.HasBasis
ContinuousMap
UniformSpace.toTopologicalSpace
Set
uniformity
compactConvergenceUniformSpace
IsCompact
Filter
Filter.instMembership
setOf
β€”Filter.HasBasis.compactConvergenceUniformity
Filter.basis_sets
hasBasis_compactConvergenceUniformity_of_compact πŸ“–mathematicalβ€”Filter.HasBasis
ContinuousMap
UniformSpace.toTopologicalSpace
Set
uniformity
compactConvergenceUniformSpace
Filter
Filter.instMembership
setOf
β€”Filter.HasBasis.to_hasBasis
hasBasis_compactConvergenceUniformity
isCompact_univ
Set.mem_univ
instCompleteSpaceOfCompactlyCoherentSpace πŸ“–mathematicalβ€”CompleteSpace
ContinuousMap
UniformSpace.toTopologicalSpace
compactConvergenceUniformSpace
β€”completeSpace_iff_isComplete_range
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_toUniformOnFunIsCompact
range_toUniformOnFunIsCompact
completeSpace_coe_iff_isComplete
IsClosed.completeSpace_coe
UniformOnFun.instCompleteSpace
UniformOnFun.isClosed_setOf_continuous
CompactlyCoherentSpace.isCoherentWith
instIsCountablyGeneratedProdUniformityOfWeaklyLocallyCompactSpaceOfSigmaCompactSpace πŸ“–mathematicalβ€”Filter.IsCountablyGenerated
ContinuousMap
UniformSpace.toTopologicalSpace
uniformity
compactConvergenceUniformSpace
β€”Filter.exists_antitone_basis
Filter.HasBasis.isCountablyGenerated
instCountableNat
Filter.HasAntitoneBasis.toHasBasis
CompactExhaustion.hasAntitoneBasis_compactConvergenceUniformity
isComplete_setOf_eqOn πŸ“–mathematicalβ€”IsComplete
ContinuousMap
UniformSpace.toTopologicalSpace
compactConvergenceUniformSpace
setOf
Set.EqOn
DFunLike.coe
instFunLike
β€”CompleteSpace.complete
tendsto_nhds_unique_inseparable
instR1Space
UniformSpace.to_regularSpace
Filter.Tendsto.congr'
Filter.EventuallyEq.filter_mono
tendsto_const_nhds
Filter.Tendsto.mono_left
Continuous.continuousAt
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
continuous_congr_of_inseparable
ContinuousMapClass.map_continuous
instContinuousMapClass
Set.piecewise_eqOn
LE.le.trans_eq
Inseparable.eq_1
inseparable_coe
inseparable_pi
isUniformEmbedding_comp πŸ“–mathematicalIsUniformEmbedding
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
instFunLike
compactConvergenceUniformSpace
comp
β€”IsUniformEmbedding.of_comp_iff
isUniformEmbedding_toUniformOnFunIsCompact
IsUniformEmbedding.comp
UniformOnFun.postcomp_isUniformEmbedding
isUniformEmbedding_toUniformOnFunIsCompact πŸ“–mathematicalβ€”IsUniformEmbedding
ContinuousMap
UniformSpace.toTopologicalSpace
UniformOnFun
setOf
Set
IsCompact
compactConvergenceUniformSpace
UniformOnFun.uniformSpace
toUniformOnFunIsCompact
β€”DFunLike.coe_injective
isUniformEmbedding_uniformFunOfFun πŸ“–mathematicalβ€”IsUniformEmbedding
ContinuousMap
UniformSpace.toTopologicalSpace
UniformFun
compactConvergenceUniformSpace
UniformFun.uniformSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
instFunLike
β€”IsUniformEmbedding.toIsUniformInducing
isCompact_univ
IsUniformEmbedding.comp
UniformEquiv.isUniformEmbedding
isUniformEmbedding_toUniformOnFunIsCompact
DFunLike.coe_injective
isUniformInducing_comp πŸ“–mathematicalIsUniformInducing
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
instFunLike
compactConvergenceUniformSpace
comp
β€”IsUniformInducing.of_comp_iff
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_toUniformOnFunIsCompact
IsUniformInducing.comp
UniformOnFun.postcomp_isUniformInducing
mem_compactConvergence_entourage_iff πŸ“–mathematicalβ€”Set
ContinuousMap
UniformSpace.toTopologicalSpace
Filter
Filter.instMembership
uniformity
compactConvergenceUniformSpace
IsCompact
Set.instHasSubset
setOf
β€”Filter.HasBasis.mem_iff
hasBasis_compactConvergenceUniformity
range_toUniformOnFunIsCompact πŸ“–mathematicalβ€”Set.range
UniformOnFun
setOf
Set
IsCompact
ContinuousMap
UniformSpace.toTopologicalSpace
toUniformOnFunIsCompact
Continuous
β€”Set.ext
continuous_toFun
tendsto_iff_forall_isCompact_tendstoUniformlyOn πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
UniformSpace.toTopologicalSpace
nhds
compactOpen
TendstoUniformlyOn
DFunLike.coe
instFunLike
β€”tendsto_nhds_compactOpen
tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact
comp_open_symm_mem_uniformity_sets
mem_uniformity_isClosed
inter_mem_nhdsWithin
continuousAt
UniformSpace.ball_mem_nhds
IsCompact.inter_right
IsClosed.preimage
continuous
UniformSpace.isClosed_ball
Filter.Eventually.mono
UniformSpace.isOpen_ball
SetRel.symm
lebesgue_number_of_compact_open
IsCompact.image
ContinuousMapClass.map_continuous
instContinuousMapClass
Set.MapsTo.image_subset
Filter.mp_mem
Filter.univ_mem'
Set.mem_image_of_mem
tendsto_iff_tendstoLocallyUniformly πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
UniformSpace.toTopologicalSpace
nhds
compactOpen
TendstoLocallyUniformly
DFunLike.coe
instFunLike
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
tendsto_iff_forall_isCompact_tendstoUniformlyOn
tendsto_of_tendstoLocallyUniformly
tendsto_iff_tendstoUniformly πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
UniformSpace.toTopologicalSpace
nhds
compactOpen
TendstoUniformly
DFunLike.coe
instFunLike
β€”Topology.IsInducing.tendsto_nhds_iff
IsUniformInducing.isInducing
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_uniformFunOfFun
tendsto_of_tendstoLocallyUniformly πŸ“–mathematicalTendstoLocallyUniformly
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
instFunLike
Filter.Tendsto
nhds
compactOpen
β€”tendsto_iff_forall_isCompact_tendstoUniformlyOn
tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact
TendstoLocallyUniformly.tendstoLocallyUniformlyOn
toUniformOnFun_toFun πŸ“–mathematicalβ€”DFunLike.coe
Equiv
UniformOnFun
setOf
Set
IsCompact
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.toFun
toUniformOnFunIsCompact
ContinuousMap
UniformSpace.toTopologicalSpace
instFunLike
β€”β€”
uniformContinuous_comp πŸ“–mathematicalUniformContinuous
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
instFunLike
compactConvergenceUniformSpace
comp
β€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toUniformOnFunIsCompact
UniformContinuous.comp
UniformOnFun.postcomp_uniformContinuous
IsUniformInducing.uniformContinuous
uniformContinuous_comp_left πŸ“–mathematicalβ€”UniformContinuous
ContinuousMap
UniformSpace.toTopologicalSpace
compactConvergenceUniformSpace
comp
β€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toUniformOnFunIsCompact
UniformContinuous.comp
UniformOnFun.precomp_uniformContinuous
IsCompact.image
continuous
IsUniformInducing.uniformContinuous
uniformSpace_eq_iInf_precomp_of_cover πŸ“–mathematicalIsProperMap
DFunLike.coe
ContinuousMap
instFunLike
LocallyFinite
Set.range
Set.iUnion
Set.univ
UniformSpace
UniformSpace.toTopologicalSpace
compactConvergenceUniformSpace
iInf
instInfSetUniformSpace
UniformSpace.comap
comp
β€”IsCompact.image
continuous
IsProperMap.isCompact_preimage
LocallyFinite.finite_nonempty_inter_compact
Set.inter_eq_right
Set.iUnionβ‚‚_inter
Set.iUnion_congr_Prop
Set.iUnion_nonempty_self
Set.univ_inter
UniformSpace.replaceTopology_eq
UniformOnFun.uniformSpace_eq_iInf_precomp_of_cover
UniformSpace.comap_iInf
uniformSpace_eq_inf_precomp_of_cover πŸ“–mathematicalIsProperMap
DFunLike.coe
ContinuousMap
instFunLike
Set
Set.instUnion
Set.range
Set.univ
UniformSpace
UniformSpace.toTopologicalSpace
compactConvergenceUniformSpace
instMinUniformSpace
UniformSpace.comap
comp
β€”IsCompact.image
continuous
IsProperMap.isCompact_preimage
Set.subset_univ
UniformSpace.replaceTopology_eq
UniformOnFun.uniformSpace_eq_inf_precomp_of_cover
UniformSpace.comap_inf

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_restrict_iff_continuous_uniformOnFun πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
Continuous
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.compactOpen
Set.restrict
restrict
UniformOnFun
Set.instSingletonSet
UniformOnFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformOnFun.ofFun
β€”restrict
ContinuousMap.continuous_iff_continuous_uniformFun
UniformOnFun.continuous_rng_iff
tendsto_restrict_iff_tendstoUniformlyOn πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
Filter.Tendsto
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
restrict
nhds
ContinuousMap.compactOpen
TendstoUniformlyOn
β€”restrict
ContinuousMap.tendsto_iff_tendstoUniformly
tendstoUniformlyOn_iff_tendstoUniformly_comp_coe

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
compactConvergenceUniformity πŸ“–mathematicalFilter.HasBasis
uniformity
ContinuousMap
UniformSpace.toTopologicalSpace
Set
ContinuousMap.compactConvergenceUniformSpace
IsCompact
setOf
β€”IsUniformInducing.comap_uniformity
IsUniformEmbedding.toIsUniformInducing
ContinuousMap.isUniformEmbedding_toUniformOnFunIsCompact
comap
UniformOnFun.hasBasis_uniformity_of_basis
isCompact_empty
directedOn_of_sup_mem
IsCompact.union
compactConvergenceUniformity_of_compact πŸ“–mathematicalFilter.HasBasis
uniformity
ContinuousMap
UniformSpace.toTopologicalSpace
ContinuousMap.compactConvergenceUniformSpace
setOf
β€”to_hasBasis
ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact
mem_iff
mem_of_mem
Set.Subset.rfl

UniformEquiv

Definitions

NameCategoryTheorems
arrowCongr πŸ“–CompOpβ€”

---

← Back to Index